TU Darmstadt / ULB / TUprints

Items where Division is "04 Department of Mathematics > Stochastik" and Year is [pin missing: value2]

Up a level
Export as [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Group by: Creators | Date | Item Type | Language | No Grouping
Jump to: A | B | D | G | H | K | L | M | S | W
Number of items at this level (without sub-levels): 15.

A

Aurzada, Frank ; Betz, Volker ; Lifshits, Mikhail (2021):
Universal break law for a class of models of polymer rupture. (Publisher's Version)
In: Journal of Physics A: Mathematical and Theoretical, 54 (30), IOP Publishing, ISSN 0022-3689, e-ISSN 1751-8113,
DOI: 10.26083/tuprints-00019341,
[Article]

B

Braun, Alina (2021):
In Theory and Practice - On the Rate of Convergence of Implementable Neural Network Regression Estimates. (Publisher's Version)
Darmstadt, Technische Universität,
DOI: 10.26083/tuprints-00019052,
[Ph.D. Thesis]

Buck, Micha Matthäus (2020):
Exit problems for fractional processes, random walks and an insurance model.
Darmstadt, Technische Universität Darmstadt,
DOI: 10.25534/tuprints-00011735,
[Ph.D. Thesis]

D

Dalinger, Alexander (2019):
On the hydrodynamic behaviour of a particle system with nearest neighbour interactions.
Darmstadt, Technische Universität,
[Ph.D. Thesis]

G

Götz, Benedict ; Kersting, Sebastian (2022):
Estimation of Uncertainty in the Lateral Vibration Attenuation of a Beam with Piezo-Elastic Supports by Neural Networks. (Publisher's Version)
In: Applied Mechanics and Materials, 885, pp. 293-303. Trans Tech Publications Ltd., ISSN 1660-9336, e-ISSN 1662-7482,
DOI: 10.26083/tuprints-00020433,
[Article]

H

Henkel, Daniel (2012):
Pointwise Approximation of Coupled Ornstein-Uhlenbeck Processes.
Darmstadt, Technische Universität,
[Ph.D. Thesis]

K

Kettner, Marvin (2021):
Persistence exponents via perturbation theory : autoregressive and moving average processes. (Publisher's Version)
Darmstadt, Technische Universität Darmstadt,
DOI: 10.26083/tuprints-00017566,
[Ph.D. Thesis]

Kilian, Martin Alexander Dennis (2023):
Persistence problems for fractional processes. (Publisher's Version)
Darmstadt, Technische Universität Darmstadt,
DOI: 10.26083/tuprints-00022949,
[Ph.D. Thesis]

L

Lübbers, Jan-Erik (2019):
Displacement of biased random walk in a one-dimensional percolation model.
Darmstadt, Technische Universität,
[Ph.D. Thesis]

M

Müller, Florian (2018):
Nichtparametrische Kurvenschätzung für latente Variablen.
Darmstadt, Technische Universität,
[Ph.D. Thesis]

S

Schwinn, Sebastian (2018):
Mathematical analysis of models from communications engineering.
Darmstadt, Technische Universität,
[Ph.D. Thesis]

Schäfer, Helge (2018):
The Cycle Structure of Random Permutations without Macroscopic Cycles.
Darmstadt, Technische Universität,
[Ph.D. Thesis]

Schöchtel, Georg (2013):
Motion of Inertial Particles in Gaussian Fields Driven by an Infinite-Dimensional Fractional Brownian Motion.
Darmstadt, Technische Universität,
[Ph.D. Thesis]

W

Wagner, Tim (2008):
Optimal One-Point Approximation of Stochastic Heat Equations with Additive Noise.
Darmstadt, Technische Universität,
[Ph.D. Thesis]

Walter, Stefan (2017):
Curve Shortening Flow for Spatial Random Permutations.
Darmstadt, Technische Universität,
[Ph.D. Thesis]

This list was generated on Fri Mar 31 23:23:36 2023 CEST.