TU Darmstadt / ULB / TUprints

Items where Division is "04 Department of Mathematics > Analysis" and Year is [pin missing: value2]

Up a level
Export as [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Group by: Creators | Date | Item Type | Language | No Grouping
Jump to: A | B | E | F | G | K | L | N | S | V | Z
Number of items at this level (without sub-levels): 14.


Albert, Christoph (2013):
On Stability of Falling Films: Numerical and Analytical Investigations.
Darmstadt, Technische Universität,
[Ph.D. Thesis]


Bagheri, Milad ; Stumpf, Bastian ; Roisman, Ilia V. ; Dadvand, Abdolrahman ; Wörner, Martin ; Marschall, Holger (2022):
A unified finite volume framework for phase‐field simulations of an arbitrary number of fluid phases. (Publisher's Version)
In: The Canadian Journal of Chemical Engineering, 100 (9), pp. 2291-2308. John Wiley & Sons, e-ISSN 1939-019X,
DOI: 10.26083/tuprints-00022441,


Eiter, Thomas (2020):
Existence and Spatial Decay of Periodic Navier-Stokes Flows in Exterior Domains.
Darmstadt, Logos Verlag Berlin, ISBN 978-3-8325-5108-7,
DOI: 10.25534/tuprints-00011629,


Farwig, Reinhard ; Kanamaru, Ryo (2021):
Optimality of Serrin type extension criteria to the Navier-Stokes equations. (Publisher's Version)
In: Advances in Nonlinear Analysis, 10 (1), pp. 1071-1085. De Gruyter, ISSN 2191-9496,
DOI: 10.26083/tuprints-00019237,


Gries, Mathis Yannik (2018):
On the primitive equations and the hydrostatic Stokes operator.
Darmstadt, Technische Universität,
[Ph.D. Thesis]

Guillaume, Rolland (2012):
Global Existence and Fast-Reaction Limit in Reaction-Diffusion Systems with Cross Effects.
Darmstadt, Technische Universität,
[Ph.D. Thesis]


Komech, Andrey (2009):
Global Attraction to Solitary Waves.
Darmstadt, Technische Universität, [Habilitation]

Koutsoukou-Argyraki, Angeliki (2017):
Proof Mining for Nonlinear Operator Theory: Four Case Studies on Accretive Operators, the Cauchy Problem and Nonexpansive Semigroups.
Darmstadt, Technische Universität Darmstadt,
[Ph.D. Thesis]

Kyed, Mads (2012):
Time-Periodic Solutions to the Navier-Stokes Equations.
Darmstadt, Technische Universität, [Habilitation]


Lenz, Jonas (2020):
Global Existence for a Tumor Invasion Model with Repellent Taxis and Therapy.
Darmstadt, Technische Universität, DOI: 10.25534/tuprints-00011578,
[Master Thesis]


Nesensohn, Manuel (2012):
Lp-theory for a class of viscoelastic fluids with and without a free surface.
Darmstadt, Technische Universität,
[Ph.D. Thesis]


Seyfert, Anton (2018):
The Helmholtz-Hodge Decomposition in Lebesgue Spaces on Exterior Domains and Evolution Equations on the Whole Real Time Axis.
Darmstadt, Technische Universität,
[Ph.D. Thesis]


von Below, Lorenz (2014):
The Stokes and Navier-Stokes equations in layer domains with and without a free surface.
Darmstadt, Technische Universität,
[Ph.D. Thesis]


Zahn, Peter (2021):
Grundlegung einer widerspruchsfreien Nichtstandard-Mathematik. (Publisher's Version)
DOI: 10.26083/tuprints-00017472,

This list was generated on Sat Apr 1 13:45:38 2023 CEST.