TU Darmstadt / ULB / TUprints

Items where Division is "04 Department of Mathematics > Analysis" and Year is [pin missing: value2]

Up a level
Export as [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Group by: Creators | Date | Item Type | Language | No Grouping
Jump to: 2024 | 2022 | 2021 | 2020 | 2018 | 2017 | 2014 | 2013 | 2012 | 2009
Number of items at this level (without sub-levels): 16.

2024

Brandt, Felix ; Hieber, Matthias (2024)
Strong periodic solutions to quasilinear parabolic equations: An approach by the Da Prato–Grisvard theorem.
In: Bulletin of the London Mathematical Society, 2023, 55 (4)
doi: 10.26083/tuprints-00024693
Article, Secondary publication, Publisher's Version

Celik, Aday ; Kyed, Mads (2024)
Time‐periodic Stokes equations with inhomogeneous Dirichlet boundary conditions in a half‐space.
In: Mathematical Methods in the Applied Sciences, 2020, 43 (5)
doi: 10.26083/tuprints-00016728
Article, Secondary publication, Publisher's Version

2022

Bagheri, Milad ; Stumpf, Bastian ; Roisman, Ilia V. ; Dadvand, Abdolrahman ; Wörner, Martin ; Marschall, Holger (2022)
A unified finite volume framework for phase‐field simulations of an arbitrary number of fluid phases.
In: The Canadian Journal of Chemical Engineering, 2022, 100 (9)
doi: 10.26083/tuprints-00022441
Article, Secondary publication, Publisher's Version

2021

Farwig, Reinhard ; Kanamaru, Ryo (2021)
Optimality of Serrin type extension criteria to the Navier-Stokes equations.
In: Advances in Nonlinear Analysis, 2020, 10 (1)
doi: 10.26083/tuprints-00019237
Article, Secondary publication, Publisher's Version

Zahn, Peter (2021)
Grundlegung einer widerspruchsfreien Nichtstandard-Mathematik.
doi: 10.26083/tuprints-00017472
Report, Primary publication, Publisher's Version

2020

Eiter, Thomas (2020)
Existence and Spatial Decay of Periodic Navier-Stokes Flows in Exterior Domains.
doi: 10.25534/tuprints-00011629
Book, Primary publication

Lenz, Jonas (2020)
Global Existence for a Tumor Invasion Model with Repellent Taxis and Therapy.
Technische Universität
doi: 10.25534/tuprints-00011578
Master Thesis, Primary publication

2018

Gries, Mathis Yannik (2018)
On the primitive equations and the hydrostatic Stokes operator.
Technische Universität
Ph.D. Thesis, Primary publication

Seyfert, Anton (2018)
The Helmholtz-Hodge Decomposition in Lebesgue Spaces on Exterior Domains and Evolution Equations on the Whole Real Time Axis.
Technische Universität
Ph.D. Thesis, Primary publication

2017

Koutsoukou-Argyraki, Angeliki (2017)
Proof Mining for Nonlinear Operator Theory: Four Case Studies on Accretive Operators, the Cauchy Problem and Nonexpansive Semigroups.
Technische Universität Darmstadt
Ph.D. Thesis, Primary publication

2014

von Below, Lorenz (2014)
The Stokes and Navier-Stokes equations in layer domains with and without a free surface.
Technische Universität
Ph.D. Thesis, Primary publication

2013

Albert, Christoph (2013)
On Stability of Falling Films: Numerical and Analytical Investigations.
Technische Universität
Ph.D. Thesis, Primary publication

Kyed, Mads (2013)
Time-Periodic Solutions to the Navier-Stokes Equations.
Universitäts- und Landesbibliothek Darmstadt, 2012
Habilitation, Secondary publication

2012

Guillaume, Rolland (2012)
Global Existence and Fast-Reaction Limit in Reaction-Diffusion Systems with Cross Effects.
Technische Universität
Ph.D. Thesis, Primary publication

Nesensohn, Manuel (2012)
Lp-theory for a class of viscoelastic fluids with and without a free surface.
Technische Universität
Ph.D. Thesis, Primary publication

2009

Komech, Andrey (2009)
Global Attraction to Solitary Waves.
Universitäts- und Landesbibliothek Darmstadt, 2009
Habilitation, Secondary publication

This list was generated on Sun Mar 3 15:47:37 2024 CET.