Items where Division is "18 Department of Electrical Engineering and Information Technology > Institute for Telecommunications > Bioinspired Communication Systems" and Year is [pin missing: value2]
![]() | Up a level |
- TU Darmstadt (9)
- 18 Department of Electrical Engineering and Information Technology (9)
- Institute for Telecommunications (9)
- Bioinspired Communication Systems (9)
- Institute for Telecommunications (9)
- 18 Department of Electrical Engineering and Information Technology (9)
A
Alt, Bastian (2022):
Model-Based Bayesian Inference, Learning, and Decision-Making with Applications in Communication Systems. (Publisher's Version)
Darmstadt, Technische Universität,
DOI: 10.26083/tuprints-00020515,
[Ph.D. Thesis]
Altintan, Derya ; Koeppl, Heinz (2021):
Hybrid master equation for jump-diffusion approximation
of biomolecular reaction networks. (Postprint)
In: BIT Numerical Mathematics, 60 (2), pp. 261-294. Springer, ISSN 0006-3835, e-ISSN 1572-9125,
DOI: 10.26083/tuprints-00017586,
[Article]
B
Bronstein, Leo (2020):
Approximation and Model Reduction for the Stochastic Kinetics of Reaction Networks.
Darmstadt, Technische Universität,
DOI: 10.25534/tuprints-00013433,
[Ph.D. Thesis]
K
Khuda Bukhsh, Wasiur Rahman (2018):
Model reductions for queueing and agent-based systems with applications in communication networks.
Darmstadt, Technische Universität,
[Ph.D. Thesis]
Kruk, Nikita (2020):
Collective Dynamics of Large Scale Multiagent Systems with Nonlocal Interactions. (Publisher's Version)
Darmstadt, Technische Universität,
DOI: 10.25534/tuprints-00017368,
[Ph.D. Thesis]
L
Lehr, François-Xavier (2021):
Engineering and testing RNA-circuits in cell-free systems. (Publisher's Version)
Darmstadt, Technische Universität,
DOI: 10.26083/tuprints-00015408,
[Ph.D. Thesis]
Linzner, Dominik (2021):
Scalable Inference in Graph-coupled Continuous-time Markov Chains. (Publisher's Version)
Darmstadt, Technische Universität,
DOI: 10.12921/tuprints-00017403,
[Ph.D. Thesis]
V
Velumani, Sakthivel (2019):
Design and Implementation of Improved Decoding Algorithms for LDPC Convolutional Codes.
Darmstadt, Technische Universität, [Master Thesis]
Y
Yang, Sikun (2020):
Non-parametric Bayesian Latent Factor Models for Network Reconstruction.
Darmstadt, Technische Universität,
DOI: 10.25534/tuprints-00009695,
[Ph.D. Thesis]