Stegmann, Patrick Günter (2016)
Light Scattering by Non-Spherical Particles.
Technische Universität Darmstadt
Ph.D. Thesis, Primary publication
|
Text
Dissertation_Stegmann_Print.pdf Copyright Information: CC BY-NC-ND 3.0 Unported - Creative Commons, Attribution, NonCommercial, NoDerivs. Download (25MB) | Preview |
Item Type: | Ph.D. Thesis | ||||
---|---|---|---|---|---|
Type of entry: | Primary publication | ||||
Title: | Light Scattering by Non-Spherical Particles | ||||
Language: | English | ||||
Referees: | Tropea, Prof. Cameron ; Gréhan, Prof. Gérard | ||||
Date: | 2016 | ||||
Place of Publication: | Darmstadt | ||||
Date of oral examination: | 16 December 2015 | ||||
Abstract: | Nicht-sphärische Teilchen sind in der Natur sowie in verfahrenstechnischen Anwendungen sehr häufig anzutreffen. Insbesondere die Detektion von Eiskristallen während des Fluges durch Verkehrsflugzeuge ist ein Problem, dass in den vergangenen Jahren vermehrt Aufmerksamkeit erhalten hat. Während das Problem der Streuung einer ebenen elektromagnetischen Welle durch ein homogenes und isotropes sphärisches Teilchen, wie z.B. einen Regentropfen als vollständig gelöst anzusehen ist, ist dies bei nicht-sphärischen Partikeln nicht der Fall. Hier existiert nach wie vor ein Fokus der Forschung und Entwicklung sowohl auf theoretischer, numerischer, als auch experimenteller Seite, aufgrund einer Vielzahl an unterschiedlichen Schwierigkeiten. Diese Arbeit beschreibt verschiedene numerische und semianalytische Verfahren, die auf das Streuproblem angewandt werden können und dabei die gesamte Reichweite des maßgeblichen Mie-Größenparameters abdecken. Diese Methoden werden auf die Kalibration und Interpretation der Messergebnisse des PHIPS-Messinstruments angewandt, welches in einer HALO Kampagne zur Charakterisierung von atmosphärischen Eiskristallen erprobt wurde. Die Berechnungsmethoden im Einzelnen beinhalten zwei Derivate der geometrischen Optik, anwendbar auf beliebige Partikel-Geometrien mit homogenem, als auch inhomogenem Brechungsindex, das numerisch exakte Verfahren der Finiten Integration der Maxwell-Gleichungen, sowie die in der Lichtstreuung und Quantenmechanik häufig verwendete Transitionsoperator-Methode. Diese Berechnungsmethoden werden auf eine Reihe von Beispiel- Geometrien angewandt und der Einfluss von Polarisation und gemittelter Partikel-Orientierung werden untersucht. Zusätzlich wurde ein Verfahren implementiert, dass das Strahlprofil eines Laserstrahls auf die gestreute Lichtintensität berücksichtigt, welches beispielsweise in der Anwendung bei Time-Shift Messungen eine zentrale Rolle spielt. Die Grenzen der Anwendbarkeit der verschiedenen Berechnungsmethoden werden in der Arbeit erläutert. Des Weiteren werden mehrere moderne Messverfahren auf ihre Anwendbarkeit im Hinblick auf nicht-sphärische Teilchen hin überprüft. Dies beinhaltet unter anderem das Time-Shift Messverfahren, sowie interferometrische bildgebende Verfahren. Die Analyse der Anwendbarkeit der verschiedenen Messmethoden ist im experimentellen Abschnitt der Arbeit dokumentiert. Messungen der Streulicht-Phasenfunktionen von natürlichen Eiskristallen wurden ebenfalls durchgeführt und die spezifischen Vorbereitungen für die Untersuchungen von Eiskristallen in einem optischen Experiment werden in dieser Arbeit ebenfalls erläutert. Als gemeinsame Problematik konnte bei vielen Verfahren der limitierte Dynamikbereich der verwendeten Detektoren identifiziert werden. Ein abschließender wichtiger Aspekt in dieser Arbeit ist die Produktion und Aufbewahrung von Eiskristallen mit möglichst natürlichen optischen Eigenschaften in einer Laborumgebung. Hierfür wurde eine kompakte Wolkenkammer entwickelt, die die geforderten Eigenschaften an Produktionsmenge und Qualität von Eiskristallen erfüllt. Auslegung, Konstruktion und Betrieb des Apparates werden im letzten Kapitel der Dissertation detailliert wiedergegeben. |
||||
Alternative Abstract: |
|
||||
URN: | urn:nbn:de:tuda-tuprints-52570 | ||||
Classification DDC: | 600 Technology, medicine, applied sciences > 620 Engineering and machine engineering | ||||
Divisions: | 16 Department of Mechanical Engineering 16 Department of Mechanical Engineering > Fluid Mechanics and Aerodynamics (SLA) Study Areas > Study area Computational Engineering |
||||
Date Deposited: | 11 Feb 2016 15:20 | ||||
Last Modified: | 15 Jul 2020 09:35 | ||||
URI: | https://tuprints.ulb.tu-darmstadt.de/id/eprint/5257 | ||||
PPN: | 377945633 | ||||
Export: |
View Item |