TU Darmstadt / ULB / TUprints

Items where Division is "04 Department of Mathematics > Analysis" and Year is [pin missing: value2]

Up a level
Export as [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Group by: Creators | Date | Item Type | Language | No Grouping
Jump to: A | E | G | K | L | N | S | V
Number of items at this level (without sub-levels): 11.


Albert, Christoph (2013):
On Stability of Falling Films: Numerical and Analytical Investigations.
Darmstadt, Technische Universität,
[Ph.D. Thesis]


Eiter, Thomas (2020):
Existence and Spatial Decay of Periodic Navier-Stokes Flows in Exterior Domains.
Darmstadt, Logos Verlag Berlin, ISBN 978-3-8325-5108-7,
DOI: 10.25534/tuprints-00011629,


Gries, Mathis Yannik (2018):
On the primitive equations and the hydrostatic Stokes operator.
Darmstadt, Technische Universität,
[Ph.D. Thesis]

Guillaume, Rolland (2012):
Global Existence and Fast-Reaction Limit in Reaction-Diffusion Systems with Cross Effects.
Darmstadt, Technische Universität,
[Ph.D. Thesis]


Komech, Andrey (2009):
Global Attraction to Solitary Waves.
Darmstadt, Technische Universität, [Habilitation]

Koutsoukou-Argyraki, Angeliki (2017):
Proof Mining for Nonlinear Operator Theory: Four Case Studies on Accretive Operators, the Cauchy Problem and Nonexpansive Semigroups.
Darmstadt, Technische Universität Darmstadt,
[Ph.D. Thesis]

Kyed, Mads (2012):
Time-Periodic Solutions to the Navier-Stokes Equations.
Darmstadt, Technische Universität, [Habilitation]


Lenz, Jonas (2020):
Global Existence for a Tumor Invasion Model with Repellent Taxis and Therapy.
Darmstadt, Technische Universität, DOI: 10.25534/tuprints-00011578,
[Master Thesis]


Nesensohn, Manuel (2012):
Lp-theory for a class of viscoelastic fluids with and without a free surface.
Darmstadt, Technische Universität,
[Ph.D. Thesis]


Seyfert, Anton (2018):
The Helmholtz-Hodge Decomposition in Lebesgue Spaces on Exterior Domains and Evolution Equations on the Whole Real Time Axis.
Darmstadt, Technische Universität,
[Ph.D. Thesis]


von Below, Lorenz (2014):
The Stokes and Navier-Stokes equations in layer domains with and without a free surface.
Darmstadt, Technische Universität,
[Ph.D. Thesis]

This list was generated on Sat Jan 23 22:31:16 2021 CET.