TU Darmstadt / ULB / TUprints

The Helmholtz-Hodge Decomposition in Lebesgue Spaces on Exterior Domains and Evolution Equations on the Whole Real Time Axis

Seyfert, Anton (2018)
The Helmholtz-Hodge Decomposition in Lebesgue Spaces on Exterior Domains and Evolution Equations on the Whole Real Time Axis.
Technische Universität Darmstadt
Ph.D. Thesis, Primary publication

[img]
Preview
Text
20180801SeyfertAnton.pdf - Accepted Version
Copyright Information: CC BY 4.0 International - Creative Commons, Attribution.

Download (879kB) | Preview
Item Type: Ph.D. Thesis
Type of entry: Primary publication
Title: The Helmholtz-Hodge Decomposition in Lebesgue Spaces on Exterior Domains and Evolution Equations on the Whole Real Time Axis
Language: English
Referees: Hieber, Prof. Dr. Matthias ; Kozono, Prof. Dr. Hideo
Date: 2018
Place of Publication: Darmstadt
Date of oral examination: 5 July 2018
Abstract:

The first topic of this thesis is the Helmholtz-Hodge decomposition of vector fields in Lebesgue spaces $L^p$ defined on three-dimensional exterior domains, i.e. a decomposition of vector fields into a gradient field, a harmonic vector field and a rotation field. Here, a full characterisation of the existence and uniqueness of the decomposition is given for two different kinds of boundary conditions and the full range of $p \in (1,\infty)$. As a part of the proof, a complete solution theory for systems of weak Poisson problems with partially vanishing boundary conditions is developed.

The second part of the thesis is about bounded solutions to linear evolution equations on the whole real time axis which includes in particular periodic and almost periodic solutions. Building upon works of Yamazaki (2000) and Geissert, Hieber, Nguyen (2016), the existence of mild solutions and maximal continuous regularity of such equations is shown in an abstract setting of interpolation spaces under the assumption of suitable polynomial decay properties of the semigroup associated to the problem at hand.

Alternative Abstract:
Alternative AbstractLanguage

Das erste Thema der vorliegenden Arbeit ist die Helmholtz-Hodge-Zerlegung von Vektorfeldern in Lebesgue-Räumen $L^p$ definiert auf dreidimensionalen Außenraumgebieten. Das heißt, es geht um Zerlegungen von Vektorfeldern in ein Gradientenfeld, ein harmonisches Vektorfeld und ein Rotationsfeld. Es wird eine komplette Existenz- und Eindeutigkeitstheorie in Abhängigkeit von den Randbedingungen der einzelnen Komponenten und der Integrationsordnung $p \in (1,\infty)$ hergeleitet. Einen großen Teil des Beweises macht dabei die vollständige Lösungstheorie zu einem System schwacher Poisson-Probleme mit partiellen Dirichlet-Randbedingungen aus.

Das zweite Thema der Arbeit sind lineare Evolutionsgleichungen auf der gesamten reellen Zeitachse. Unter Annahme geeigneter polynomieller Abklingbedingungen an die zugehörige Halbgruppe werden die Existenz milder Lösungen oder maximale stetige Regularität in Interpolationsräumen nachgewiesen.

German
URN: urn:nbn:de:tuda-tuprints-77259
Classification DDC: 500 Science and mathematics > 510 Mathematics
Divisions: 04 Department of Mathematics
04 Department of Mathematics > Analysis
04 Department of Mathematics > Analysis > Angewandte Analysis
Date Deposited: 31 Aug 2018 10:27
Last Modified: 09 Jul 2020 02:13
URI: https://tuprints.ulb.tu-darmstadt.de/id/eprint/7725
PPN: 43559866X
Export:
Actions (login required)
View Item View Item