Lutter, Michael ; Ritter, Christian ; Peters, Jan (2023)
Deep Lagrangian Networks: Using Physics as Model Prior for Deep Learning.
7th International Conference on Learning Representations (ICLR) 2019. New Orleans, Louisiana, United States (06.05.2019-09.05.2019)
doi: 10.26083/tuprints-00020557
Conference or Workshop Item, Secondary publication, Publisher's Version
Text
798_deep_lagrangian_networks_using.pdf Copyright Information: CC BY 4.0 International - Creative Commons, Attribution. Download (5MB) |
Item Type: | Conference or Workshop Item |
---|---|
Type of entry: | Secondary publication |
Title: | Deep Lagrangian Networks: Using Physics as Model Prior for Deep Learning |
Language: | English |
Date: | 17 October 2023 |
Place of Publication: | Darmstadt |
Year of primary publication: | 2019 |
Collation: | 17 Seiten |
Event Title: | 7th International Conference on Learning Representations (ICLR) 2019 |
Event Location: | New Orleans, Louisiana, United States |
Event Dates: | 06.05.2019-09.05.2019 |
DOI: | 10.26083/tuprints-00020557 |
Corresponding Links: | |
Origin: | Secondary publication service |
Abstract: | Deep learning has achieved astonishing results on many tasks with large amounts of data and generalization within the proximity of training data. For many important real-world applications, these requirements are unfeasible and additional prior knowledge on the task domain is required to overcome the resulting problems. In particular, learning physics models for model-based control requires robust extrapolation from fewer samples – often collected online in real-time – and model errors may lead to drastic damages of the system. Directly incorporating physical insight has enabled us to obtain a novel deep model learning approach that extrapolates well while requiring fewer samples. As a first example, we propose Deep Lagrangian Networks (DeLaN) as a deep network structure upon which Lagrangian Mechanics have been imposed. DeLaN can learn the equations of motion of a mechanical system (i.e., system dynamics) with a deep network efficiently while ensuring physical plausibility. The resulting DeLaN network performs very well at robot tracking control. The proposed method did not only outperform previous model learning approaches at learning speed but exhibits substantially improved and more robust extrapolation to novel trajectories and learns online in real-time. |
Uncontrolled Keywords: | Deep Model Learning, Robot Control |
Status: | Publisher's Version |
URN: | urn:nbn:de:tuda-tuprints-205579 |
Additional Information: | TL;DR: This paper introduces a physics prior for Deep Learning and applies the resulting network topology for model-based control. |
Classification DDC: | 000 Generalities, computers, information > 004 Computer science |
Divisions: | 20 Department of Computer Science > Intelligent Autonomous Systems Zentrale Einrichtungen > Centre for Cognitive Science (CCS) |
TU-Projects: | EC/H2020|640554|SKILLS4ROBOTS |
Date Deposited: | 17 Oct 2023 11:37 |
Last Modified: | 26 Jul 2024 09:11 |
URI: | https://tuprints.ulb.tu-darmstadt.de/id/eprint/20557 |
PPN: | 512614946 |
Export: |
View Item |