
Published as a conference paper at ICLR 2019

Deep Lagrangian Networks:
Using Physics as Model Prior for Deep Learning

Michael Lutter, Christian Ritter & Jan Peters ∗
Department of Computer Science
Technische Universität Darmstadt
Hochschulstr. 10, 64289 Darmstadt, Germany
{Lutter, Peters}@ias.tu-darmstadt.de

Abstract

Deep learning has achieved astonishing results onmany taskswith large amounts of
data and generalization within the proximity of training data. For many important
real-world applications, these requirements are unfeasible and additional prior
knowledge on the task domain is required to overcome the resulting problems.
In particular, learning physics models for model-based control requires robust
extrapolation from fewer samples – often collected online in real-time – and model
errors may lead to drastic damages of the system.
Directly incorporating physical insight has enabled us to obtain a novel deep model
learning approach that extrapolates well while requiring fewer samples. As a first
example, we propose Deep Lagrangian Networks (DeLaN) as a deep network
structure upon which Lagrangian Mechanics have been imposed. DeLaN can
learn the equations of motion of a mechanical system (i.e., system dynamics) with
a deep network efficiently while ensuring physical plausibility.
The resulting DeLaN network performs very well at robot tracking control. The
proposed method did not only outperform previous model learning approaches at
learning speed but exhibits substantially improved and more robust extrapolation
to novel trajectories and learns online in real-time.

1 Introduction

In the last five years, deep learning has propelled most areas of learning forward at an impressive
pace (Krizhevsky et al., 2012; Mnih et al., 2015; Silver et al., 2017) – with the exception of physically
embodied systems. This lag in comparison to other application areas is somewhat surprising as
learning physical models is critical for applications that control embodied systems, reason about
prior actions or plan future actions (e.g., service robotics, industrial automation). Instead, most
engineers prefer classical off-the-shelf modeling as it ensures physical plausibility – at a high cost
of precise measurements1 and engineering effort. These plausible representations are preferred as
these models guarantee to extrapolate to new samples, while learned models only achieve good
performance in the vicinity of the training data.

To learn amodel that obtains physically plausible representations, we propose to use the insights from
physics as amodel prior for deep learning. In particular, the combination of deep learning and physics
seems natural as the compositional structure of deep networks enables the efficient computation of
the derivatives at machine precision (Raissi & Karniadakis, 2018) and, thus, can encode a differential
equation describing physical processes. Therefore, we suggest to encode the physics prior in the form
of a differential in the network topology. This adapted topology amplifies the information content
of the training samples, regularizes the end-to-end training, and emphasizes robust models capable
of extrapolating to new samples while simultaneously ensuring physical plausibility. Hereby, we
concentrate on learning models of mechanical systems using the Euler-Lagrange-Equation, a second
order ordinary differential equation (ODE) originating from Lagrangian Mechanics, as physics prior.
∗Max Planck Institute for Intelligent Systems, Spemannstr. 41, 72076 Tübingen, Germany
1Highly precise models usually require taking the physical system apart and measuring the separated pieces

(Albu-Schäffer, 2002).

1
Licence: CC BY 4.0 / Creative Commons Attribution 4.0

International https://creativecommons.org/licenses/by/4.0

Published as a conference paper at ICLR 2019

We focus on learning models of mechanical systems as this problem is one of the fundamental
challenges of robotics (de Wit et al., 2012; Schaal et al., 2002).

Contribution

The contribution of this work is twofold. First, we derive a network topology called Deep Lagrangian
Networks (DeLaN) encoding the Euler-Lagrange equation originating from Lagrangian Mechanics.
This topology can be trained using standard end-to-end optimization techniques while maintaining
physical plausibility. Therefore, the obtained model must comply with physics. Unlike previous
approaches to learning physics (Atkeson et al., 1986; Ledezma&Haddadin, 2017), which engineered
fixed features from physical assumptions requiring knowledge of the specific physical embodiment,
we are ‘only’ enforcing physics upon a generic deep network. For DeLaN only the system state and
the control signal are specific to the physical system but neither the proposed network structure nor
the training procedure. Second, we extensively evaluate the proposed approach by using the model
to control a simulated 2 degrees of freedom (dof) robot and the physical 7-dof robot Barrett WAM in
real time. We demonstrate DeLaN’s control performance where DeLaN learns the dynamics model
online starting from random initialization. In comparison to analytic- and other learned models,
DeLaN yields a better control performance while at the same time extrapolates to new desired
trajectories.

In the following we provide an overview about related work (Section 2) and briefly summarize
Lagrangian Mechanics (Section 3). Subsequently, we derive our proposed approach DeLaN and the
necessary characteristics for end-to-end training are shown (Section 4). Finally, the experiments in
Section 5 evaluate the model learning performance for both simulated and physical robots. Here,
DeLaN outperforms existing approaches.

2 Related Work

Models describing system dynamics, i.e. the coupling of control input τττ and system state q, are
essential for model-based control approaches (Ioannou & Sun, 1996). Depending on the control
approach, the control law relies either on the forward model f , mapping from control input to the
change of system state, or on the inverse model f −1, mapping from system change to control input,
i.e.,

f (q, Ûq, τττ) = Üq, f −1(q, Ûq, Üq) = τττ. (1)

Examples for application of these models are inverse dynamics control (de Wit et al., 2012), which
uses the inverse model to compensate system dynamics, while model-predictive control (Camacho &
Alba, 2013) and optimal control (Zhou et al., 1996) use the forward model to plan the control input.
These models can be either derived from physics or learned from data. The physics models must
be derived for the individual system embodiment and requires precise knowledge of the physical
properties (Albu-Schäffer, 2002). When learning the model2, mostly standard machine learning
techniques are applied to fit either the forward- or inverse-model to the training data. E.g., authors
used Linear Regression (Schaal et al., 2002; Haruno et al., 2001), Gaussian Mixture Regression
(Calinon et al., 2010; Khansari-Zadeh & Billard, 2011), Gaussian Process Regression (Kocijan
et al., 2004; Nguyen-Tuong et al., 2009; Nguyen-Tuong & Peters, 2010), Support Vector Regression
(Choi et al., 2007; Ferreira et al., 2007), feedforward- (Jansen, 1994; Lenz et al., 2015; Ledezma &
Haddadin, 2017; Sanchez-Gonzalez et al., 2018) or recurrent neural networks (Rueckert et al., 2017)
to fit the model to the observed measurements.

Only few approaches incorporate prior knowledge into the learning problem. Sanchez-Gonzalez
et al. (2018) use the graph representation of the kinematic structure as input. While the work
of Atkeson et al. (1986), commonly referenced as the standard system identification technique for
robot manipulators (Siciliano & Khatib, 2016), uses the Newton-Euler formalism to derive physics
features using the kinematic structure and the joint measurements such that the learning of the
dynamics model simplifies to linear regression. Similarly, Ledezma & Haddadin (2017) hard-code
these physics features within a neural network and learn the dynamics parameters using gradient
descent rather than linear regression. Even though these physics features are derived from physics, the

2Further information can be found in the model learning survey by Nguyen-Tuong & Peters (2011).

2

Published as a conference paper at ICLR 2019

learned parameters for mass, center of gravity and inertia must not necessarily comply with physics
as the learned parameters may violate the positive definiteness of the inertia matrix or the parallel
axis theorem (Ting et al., 2006). Furthermore, the linear regression is commonly underdetermined
and only allows to infer linear combinations of the dynamics parameters and cannot be applied to
close-loop kinematics (Siciliano & Khatib, 2016).

DeLaN follows the line of structured learning problems but in contrast to previous approaches
guarantees physical plausibility and provides a more general formulation. This general formulation
enables DeLaN to learn the dynamics for any kinematic structure, including kinematic trees and
closed-loop kinematics, and in addition does not require any knowledge about the kinematic structure.
Therefore, DeLaN is identical for all mechanical systems, which is in strong contrast to the Newton-
Euler approaches, where the features are specific to the kinematic structure. Only the system state
and input is specific to the system but neither the network topology nor the optimization procedure.

The combination of differential equations and Neural Networks has previously been investigated in
literature. Early on Lagaris et al. (1998; 2000) proposed to learn the solution of partial differential
equations (PDE) using neural networks and currently this topic is being rediscovered by Raissi &
Karniadakis (2018); Sirignano & Spiliopoulos (2017); Long et al. (2017). Most research focuses on
using machine learning to overcome the limitations of PDE solvers. E.g., Sirignano & Spiliopoulos
(2017) proposed the Deep Galerkin method to solve a high-dimensional PDE from scattered data.
Only thework ofRaissi et al. (2017) took the opposite standpoint of using the knowledge of the specific
differential equation to structure the learning problem and achieve lower sample complexity. In this
paper, we follow the same motivation as Raissi et al. (2017) but take a different approach. Rather
than explicitly solving the differential equation, DeLaN only uses the structure of the differential
equation to guide the learning problem of inferring the equations of motion. Thereby the differential
equation is only implicitly solved. In addition, the proposed approach uses different encoding of
the partial derivatives, which achieves the efficient computation within a single feed-forward pass,
enabling the application within control loops.

3 Preliminaries: Lagrangian Mechanics

Describing the equations of motion for mechanical systems has been extensively studied and various
formalisms to derive these equations exist. The most prominent are Newtonian-, Hamiltonian-
and Lagrangian-Mechanics. Within this work Lagrangian Mechanics is used, more specifically the
Euler-Lagrange formulation with non-conservative forces and generalized coordinates.3 Generalized
coordinates are coordinates that uniquely define the system configuration. This formalism defines
the Lagrangian L as a function of generalized coordinates q describing the complete dynamics of
a given system. The Lagrangian is not unique and every L which yields the correct equations of
motion is valid. The Lagrangian is generally chosen to be

L = T −V (2)

where T is the kinetic energy and V is the potential energy. The kinetic energy T can be computed
for all choices of generalized coordinates using T = 1

2 ÛqTH(q) Ûq, whereas H(q) is the symmetric
and positive definite inertia matrix (de Wit et al., 2012). The positive definiteness ensures that all
non-zero velocities lead to positive kinetic energy. Applying the calculus of variations yields the
Euler-Lagrange equation with non-conservative forces described by

d
dt

∂L
∂ Ûqi
− ∂L
∂qi
= τττi (3)

where τττ are generalized forces. Substituting L and dV/dq = g(q) into Equation 3 yields the second
order ordinary differential equation (ODE) described by

H(q)Üq+ ÛH(q) Ûq− 1
2

(
∂

∂q

(
ÛqTH(q) Ûq

))T
︸ ︷︷ ︸

Bc(q, Ûq)

+g(q) = τττ (4)

3More information can be found in the textbooks (Greenwood, 2006; de Wit et al., 2012; Featherstone,
2007)

3

Published as a conference paper at ICLR 2019

where c describes the forces generated by the Centripetal and Coriolis forces (Featherstone, 2007).
Using this ODE any multi-particle mechanical system with holonomic constraints can be described.
For example various authors used this ODE to manually derived the equations of motion for coupled
pendulums (Greenwood, 2006), robotic manipulators with flexible joints (Book, 1984; Spong, 1987),
parallel robots (Miller, 1992; Geng et al., 1992; Liu et al., 1993) or legged robots (Hemami&Wyman,
1979; Golliday & Hemami, 1977).

4 Incorporating Lagrangian Mechanics into Deep Learning

Starting from the Euler-Lagrange equation (Equation 4), traditional engineering approaches would
estimate H(q) and g(q) from the approximated or measured masses, lengths and moments of inertia.
On the contrary most traditional model learning approaches would ignore the structure and learn the
inverse dynamics model directly from data. DeLaN bridges this gap by incorporating the structure
introduced by the ODE into the learning problem and learns the parameters in an end-to-end fashion.
More concretely, DeLaN approximates the inversemodel by representing the unknown functions g(q)
and H(q) as a feed-forward networks. Rather than representing H(q) directly, the lower-triangular
matrix L(q) is represented as deep network. Therefore, g(q) and H(q) are described by

Ĥ(q) = L̂(q ; θ) L̂(q ; θ)T ĝ(q) = ĝ(q ; ψ)

where .̂ refers to an approximation and θ andψ are the respective network parameters. The parameters
θ and ψ can be obtained by minimizing the violation of the physical law described by Lagrangian
Mechanics. Therefore, the optimization problem is described by

(θ∗, ψ∗) = argmin
θ,ψ

`
(

f̂ −1(q, Ûq, Üq ; θ,ψ), τττ
)

(5)

with f̂ −1(q, Ûq, Üq ; θ, ψ) = L̂ L̂T Üq+ d
dt

(
L̂ L̂T

)
Ûq− 1

2

(
∂

∂q

(
ÛqT L̂ L̂T Ûq

))T
+ ĝ (6)

s.t. 0 < xT L̂ L̂T x ∀ x ∈ Rn0 (7)

where f̂ −1 is the inverse model and ` can be any differentiable loss function. The computational
graph of f̂ −1 is shown in Figure 1.

Using this formulation one can conclude further properties of the learned model. Neither L̂ nor
ĝ are functions of Ûq or Üq and, hence, the obtained parameters should, within limits, generalize to
arbitrary velocities and accelerations. In addition, the obtained model can be reformulated and used
as a forward model. Solving Equation 6 for Üq yields the forward model described by

f̂ (q, Ûq, τττ ; θ, ψ) =
(
L̂ L̂T

)−1
(
τττ− d

dt

(
L̂ L̂T

)
Ûq+ 1

2

(
∂

∂q

(
ÛqT L̂ L̂T Ûq

))T
− ĝ

)
(8)

where L̂ L̂T is guaranteed to be invertible due to the positive definite constraint (Equation 7). However,
solving the optimization problem of Equation 5 directly is not possible due to the ill-posedness of the
Lagrangian L not being unique. The Euler-Lagrange equation is invariant to linear transformation
and, hence, the Lagrangian L ′ = αL + β solves the Euler-Lagrange equation if α is non-zero and
L is a valid Lagrangian. This problem can be mitigated by adding an additional penalty term to
Equation 5 described by

(θ∗, ψ∗) = argmin
θ,ψ

`
(

f̂ −1(q, Ûq, Üq ; θ,ψ), τττ
)
+λ Ω(θ, ψ) (9)

where Ω is the L2-norm of the network weights.

Solving the optimization problem of Equation 9 with a gradient based end-to-end learning approach
is non-trivial due to the positive definite constraint (Equation 7) and the derivatives contained in f̂ −1.
In particular, d(LLT)/dt and ∂

(
ÛqTLLT Ûq

)
/∂qi cannot be computed using automatic differentiation

as t is not an input of the network and most implementations of automatic differentiation do not allow
the backpropagation of the gradient through the computed derivatives. Therefore, the derivatives
contained in f̂ −1 must be computed analytically to exploit the full gradient information for training

4

Published as a conference paper at ICLR 2019

of the parameters. In the following we introduce a network structure that fulfills the positive-definite
constraint for all parameters (Section 4.1), prove that the derivatives d(LLT)/dt and ∂

(
ÛqTLLT Ûq

)
/∂qi

can be computed analytically (Section 4.2) and show an efficient implementation for computing the
derivatives using a single feed-forward pass (Section 4.3). Using these three properties the resulting
network architecture can be usedwithin a real-time control loop and trained using standard end-to-end
optimization techniques.

!"
!# $

!
!%&

$'"$ H$%

%̇
%̈

*

ReLu Network Physics Transformations

0 0 0
∗ 0 0
∗ ∗ 0

-.- = "

+ + +

∗ 0 0
0 ∗ 0
0 0 ∗

+

+

b
0

12

13

Linear Network

Figure 1: The computational graph of the Deep Lagrangian Network (DeLaN). Shown in blue and
green is the neural network with the three separate heads computing g(q), ld(q), lo(q). The orange
boxes correspond to the reshaping operations and the derivatives contained in the Euler-Lagrange
equation. For training the gradients are backpropagated through all vertices highlighted in orange.

4.1 Symmetry and Positive Definiteness of H

Ensuring the symmetry and positive definiteness of H is essential as this constraint enforces positive
kinetic energy for all non-zero velocities. In addition, the positive definiteness ensures that H is
invertible and the obtained model can be used as forward model. By representing the matrix H as
the product of a lower-triangular matrix the symmetry and the positive semi-definiteness is ensured
while simultaneously reducing the number of parameters. The positive definiteness is obtained if the
diagonal of L is positive. This positive diagonal also guarantees that L is invertible. Using a deep
network with different heads and altering the activation of the output layer one can obtain a positive
diagonal. The off-diagonal elements Lo use a linear activation while the diagonal elements Ld use a
non-negative activation, e.g., ReLu or Softplus. In addition, a positive scalar b is added to diagonal
elements. Thereby, ensuring a positive diagonal of L and the positive eigenvalues of H. In addition,
we chose to share parameters between L and g as both rely on the same physical embodiment. The
network architecture, with three-heads representing the diagonal ld and off-diagonal lo entries of L
and g, is shown in Figure 1.

4.2 Deriving the derivatives

The derivatives d
(
LLT

)
/dt and ∂

(
ÛqTLLT Ûq

)
/∂qi are required for computing the control signal τττ

using the inverse model and, hence, must be available within the forward pass. In addition, the
second order derivatives, used within the backpropagation of the gradients, must exist to train the
network using end-to-end training. To enable the computation of the second order derivatives using
automatic differentiation the forward computation must be performed analytically. Both derivatives,
d
(
LLT

)
/dt and ∂

(
ÛqTLLT Ûq

)
/∂qi , have closed form solutions and can be derived by first computing

the respective derivative of L and second substituting the reshaped derivative of the vectorized form
l. For the temporal derivative d

(
LLT

)
/dt this yields

d
dt

H(q) = d
dt

(
LLT

)
= L

dL
dt

T

+
dL
dt

LT (10)

whereas dL/dt can be substituted with the reshaped form of

d
dt

l =
∂l
∂q

∂q
∂t
+

N∑
i=1

∂l
∂Wi

∂Wi

∂t
+

N∑
i=1

∂l
∂bi

∂bi

∂t
(11)

where i refers to the i-th network layer consisting of an affine transformation and the non-linearity g,
i.e., hi = gi

(
WT

i hi−1+bi

)
. Equation 11 can be simplified as the network weights Wi and biases bi

5

Published as a conference paper at ICLR 2019

(b)

∗ 0 0
∗ ∗ 0
∗ ∗ ∗

∗ 0 0
∗ ∗ 0
∗ ∗ ∗

0 ∗ 0
0 ∗ 0
0 ∗ 0

W1 b1

a1 #

$#
$%

W0 b0

a0
∗ 0 0
∗ ∗ 0
∗ ∗ ∗

$#
$% %̇

%

%̇

'

('
(%)

$'
$*

(a)

Wi bi

ai
MatMul Add gi

MatMul

diag(ai)
g‘i

+,-
+,-./

,-,-./

Figure 2: (a) Computational graph of the Lagrangian layer. The orange boxes highlight the learnable
parameters. The upper computational sub-graph corresponds to the standard network layer while
the lower sub-graph is the extension of the Lagrangian layer to simultaneously compute ∂hi/∂hi−1.
(b) Computational graph of the chained Lagrangian layer to compute L, dL/dt and ∂L/∂qi using a
single feed-forward pass.

are time-invariant, i.e., dWi/dt = 0 and dbi/dt = 0. Therefore, dl/dt is described by
d
dt

l =
∂l
∂q
Ûq. (12)

Due to the compositional structure of the network and the differentiability of the non-linearity, the
derivative with respect to the network input dl/dq can be computed by recursively applying the chain
rule, i.e.,

∂l
∂q
=

∂l
∂hN−1

∂hN−1
∂hN−2

· · · ∂h1
∂q

∂hi

∂hi−1
= diag

(
g′(WT

i hi−1+bi)
)
Wi (13)

where g′ is the derivative of the non-linearity. Similarly to the previous derivation, the partial
derivative of the quadratic term can be computed using the chain rule, which yields

∂

∂qi

[
ÛqTH Ûq

]
= tr

[(
Ûq ÛqT

)T ∂H
∂qi

]
= ÛqT

(
∂L
∂qi

LT +L
∂L
∂qi

T)
Ûq (14)

whereas ∂L/∂qi can be constructed using the columns of previously derived ∂l/∂q. Therefore, all
derivatives included within f̂ can be computed in closed form.

4.3 Computing the Derivatives

The derivatives of Section 4.2 must be computed within a real-time control loop and only add
minimal computational complexity in order to not break the real-time constraint. l and ∂l/∂q,
required within Equation 10 and Equation 14, can be simultaneously computed using an extended
standard layer. Extending the affine transformation and non-linearity of the standard layer with an
additional sub-graph for computing ∂hi/∂hi−1 yields the Lagrangian layer described by

ai =Wihi−1+bi h1 = gi (ai)
∂hi

∂hi−1
= diag

(
g′i (ai)

)
Wi .

The computational graph of the Lagrangian layer is shown in Figure 2a. Chaining the Lagrangian
layer yields the compositional structure of ∂l/∂q (Equation 13) and enables the efficient computation
of ∂l/∂q. Additional reshaping operations compute dL/dt and ∂L/∂qi .

5 Experimental Evaluation: Learning an Inverse Dynamics Model for
Robot Control

To demonstrate the applicability and extrapolation of DeLaN, the proposed network topology is
applied to model-based control for a simulated 2-dof robot (Figure 3b) and the physical 7-dof robot

6

Published as a conference paper at ICLR 2019

(d)(c)

�0.5 0.0 0.5 1.0 1.5 2.0

x [m]

�2.0

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

y
[m

]

Cos 0

Cos 1

(b)(a)

!, !̇

RobotPD-Controller

Inverse Model
$%&'(!, !̇, !̈; +)

!-, !̇-, !̈-

-
.

Inverse Model
$%&'(!, !̇, !̈; +)

Loss
L 0., .

∇+2
Training ProcessControl Loop

Figure 3: (a) Real-time control loop using a PD-Controller with a feed-forward torque τττFF , compen-
sating the system dynamics, to control the joint torques τττ. The training process reads the joint states
and applies torques to learn the system dynamics online. Once a new model becomes available the
inverse model f̂ −1 in the control loop is updated. (b) The simulated 2-dof robot drawing the cosine
trajectories. (c) The simulated Barrett WAM drawing the 3d cosine 0 trajectory. (d) The physical
Barrett WAM.

Barrett WAM (Figure 3d). The performance of DeLaN is evaluated using the tracking error on train
and test trajectories and compared to a learned and analytic model. This evaluation scheme follows
existing work (Nguyen-Tuong et al., 2009; Sanchez-Gonzalez et al., 2018) as the tracking error is
the relevant performance indicator while the mean squared error (MSE)4 obtained using sample
based optimization exaggerates model performance (Hobbs & Hepenstal, 1989). In addition to most
previous work, we strictly limit all model predictions to real-time and perform the learning online,
i.e., the models are randomly initialized and must learn the model during the experiment.

Experimental Setup

Within the experiment the robot executes multiple desired trajectories with specified joint positions,
velocities and accelerations. The control signal, consisting of motor torques, is generated using
a non-linear feedforward controller, i.e., a low gain PD-Controller augmented with a feed-forward
torque τττ f f to compensate system dynamics. The control law is described by

τττ =Kp (qd −q)+Kd (Ûqd − Ûq)+ τττ f f with τττ f f = f̂ −1(qd, Ûqd, Üqd)

where Kp , Kd are the controller gains and qd , Ûqd , Üqd the desired joint positions, velocities and
accelerations. The control-loop is shown in Figure 3a. For all experiments the control frequency
is set to 500Hz while the desired joint state and respectively τττ f f is updated with a frequency of
fd = 200Hz. All feed-forward torques are computed online and, hence, the computation time is
strictly limited to T ≤ 1/200s. The tracking performance is defined as the sum of the MSE evaluated
at the sampling points of the reference trajectory.

For the desired trajectories two different data sets are used. The first data set contains all single stroke
characters5 while the second data set uses cosine curves in joint space (Figure 3c). The 20 characters
are spatially and temporally re-scaled to comply with the robot kinematics. The joint references
are computed using the inverse kinematics. Due to the different characters, the desired trajectories
contain smooth and sharp turns and cover a wide variety of different shapes but are limited to a small
task space region. In contrast, the cosine trajectories are smooth but cover a large task space region.

Baselines

The performance of DeLaN is compared to an analytic inverse dynamics model, a standard feed-
forward neural network (FF-NN) and a PD-Controller. For the analyticmodels the torque is computed
using the Recursive Newton-Euler algorithm (RNE) (Luh et al., 1980), which computes the feed-
forward torque using estimated physical properties of the system, i.e. the link dimensions, masses
and moments of inertia. For implementations the open-source library PyBullet (Coumans & Bai,
2016–2018) is used.

Both deep networks use the same dimensionality, ReLu nonlinearities and must learn the system
dynamics online starting from random initialization. The training samples containing joint states
and applied torques (q, Ûq, Üq, τττ)0,...T are directly read from the control loop as shown in Figure 3a.

4An offline comparisons evaluating the MSE on datasets can be found in the Appendix A.
5The data set was created by Williams et al. (2008) and is available at Dheeru & Karra Taniskidou (2017))

7

Published as a conference paper at ICLR 2019

d a e

0

1

2

3

T
or

q
u

e
[N

m
]

J
o

in
t

0

τ

DeLaN

Ground Truth

d a e

−1.0

−0.5

0.0

0.5

T
or

q
u

e
[N

m
]

J
o

in
t

1

(a)

d a e

−1

0

1

2

T
or

q
u

e
[N

m
]

H(q)q̈

d a e

−0.75

−0.50

−0.25

0.00

0.25

T
or

q
u

e
[N

m
]

(b)

d a e
−0.1

0.0

0.1

0.2

0.3

T
or

q
u

e
[N

m
]

c(q, q̇)

d a e

0.0

0.1

0.2

0.3

T
or

q
u

e
[N

m
]

(c)

d a e
0.0

0.5

1.0

1.5

2.0

2.5

T
or

q
u

e
[N

m
]

g(q)

d a e

−0.4

−0.2

0.0

0.2

0.4

T
or

q
u

e
[N

m
]

(d)

1 2 4 6 8 10 12 14 16 18 20
10−3

10−2

10−1

100

M
ea

n
S

q
u

ar
ed

E
rr

ro
r

Offline Testing Error

DeLaN

FF-NN

1 2 4 6 8 10 12 14 16 18 20

Train Characters

10−3

10−2

10−1

100

M
ea

n
S

q
u

ar
ed

E
rr

or

(e)

Figure 4: (a) The torque τττ required to generate the characters ’a’, ’d’ and ’e’ in black. Using these
samples DeLaN was trained offline and learns the red trajectory. DeLaN can not only learn the
desired torques but also disambiguate the individual torque components even though DeLaN was
trained on the super-imposed torques. Using Equation 6 DeLaN can represent the inertial force HÜq
(b), the Coriolis and Centrifugal forces c(q, Ûq) (c) and the gravitational force g(q) (d). All components
match closely the ground truth data. (e) shows the offline MSE of the feed-forward neural network
and DeLaN for each joint.

The training runs in a separate process on the same machine and solves the optimization problem
online. Once the training process computed a new model, the inverse model f̂ −1 of the control loop
is updated.

5.1 Simulated Robot Experiments

The 2-dof robot shown in Figure 3b is simulated using PyBullet and executes the character and
cosine trajectories. Figure 4 shows the ground truth torques of the characters ’a’, ’d’, ’e’, the torque
ground truth components and the learned decomposition using DeLaN (Figure 4a-d). Even though
DeLaN is trained on the super-imposed torques, DeLaN learns to disambiguate the inertial force
HÜq , the Coriolis and Centrifugal force c(q, Ûq) and the gravitational force g(q) as the respective
curves overlap closely. Hence, DeLaN is capable of learning the underlying physical model using
the proposed network topology trained with standard end-to-end optimization. Figure 4d shows
the offline MSE on the test set averaged over multiple seeds for the FF-NN and DeLaN w.r.t. to
different training set sizes. The different training set sizes correspond to the combination of n random
characters, i.e., a training set size of 1 corresponds to training the model on a single character and
evaluating the performance on the remaining 19 characters. DeLaN clearly obtains a lower test MSE
compared to the FF-NN. Especially the difference in performance increases when the training set
is reduced. This increasing difference on the test MSE highlights the reduced sample complexity
and the good extrapolation to unseen samples. This difference in performance is amplified on
the real-time control-task where the models are learned online starting from random initialization.
Figure 5a and b shows the accumulated tracking error per testing character and the testing error
averaged over all test characters while Figure 5c shows the qualitative comparison of the control
performance6. It is important to point out that all shown results are averaged over multiple seeds and
only incorporate characters not used for training and, hence, focus the evaluation on the extrapolation
to new trajectories. The qualitative comparison shows that DeLaN is able to execute all 20 characters
when trained on 8 random characters. The obtained tracking error is comparable to the analytic
model, which in this case contains the simulation parameters and is optimal. In contrast, the FF-NN
shows significant deviation from the desired trajectories when trained on 8 random characters. The
quantitative comparison of the accumulated tracking error over seeds (Figure 5b) shows that DeLaN
obtains lower tracking error on all training set sizes compared to the FF-NN. This good performance
using only few training characters shows that DeLaN has a lower sample complexity and better
extrapolation to unseen trajectories compared to the FF-NN.

Figure 6a and b show the performance on the cosine trajectories. For this experiment the models
are only trained online on two trajectories with a velocity scale of 1x. To assess the extrapolation
w.r.t. velocities and accelerations the learned models are tested on the same trajectories with scaled
velocities (gray area of Figure 6). On the training trajectories DeLaN and the FF-NN perform

6The full results containing all characters are provided in the Appendix B.

8

Published as a conference paper at ICLR 2019

RNE PD-Controller
FF-NN
n = 1

FF-NN
n = 6

FF-NN
n = 8

FF-NN
n = 10

(c)

DeLaN
n = 1

DeLaN
n = 6

DeLaN
n = 8

DeLaN
n = 10

1 2 4 6 8 10 12 14 16 18 20

Train Characters

10−1

100

101

102

103

A
cc

u
m

u
la

te
d

T
ra

ck
in

g
E

rr
or

(b)

Tracking Error

FF-NN

DeLaN

RNE

PD-Controller

a b c d e g h l m n o p q r s u v w y z
10−2

10−1

100

101

102

103

T
ra

ck
in

g
E

rr
or

(a)

MLP Lagrangian RNE PD-Controller

Figure 5: (a) The average performance of DeLaN and the feed forward neural network for each
character. The 4 columns of the boxplots correspond to different numbers of training characters,
i.e., n = 1, 6, 8, 10. (b) The median performance of DeLaN, the feed forward neural network and
the analytic baselines averaged over multiple seeds. The shaded areas highlight the 5th and the
95th percentile. (c) The qualitative performance for the analytic baselines, the feed forward neural
network and DeLaN. The desired trajectories are shown in red.

comparable. When the velocities are increased the performance of FF-NN deteriorates because the
new trajectories do not lie within the vicinity of the training distribution as the domain of the FF-NN
is defined as (q, Ûq, Üq). Therefore, FF-NN cannot extrapolate to the testing data. In contrast, the
domain of the networks L̂ and ĝ composing DeLaN only consist of q, rather than (q, Ûq, Üq). This
reduced domain enables DeLaN, within limit, to extrapolate to the test trajectories. The increase in
tracking error is caused by the structure of f̂ −1, where model errors to scale quadratic with velocities.
However, the obtained tracking error on the testing trajectories is significantly lower compared to
FF-NN.

5.2 Physical Robot Experiments

For physical experiments the desired trajectories are executed on the Barrett WAM, a robot with
direct cable drives. The direct cable drives produce high torques generating fast and dexterous
movements but yield complex dynamics, which cannot be modelled using rigid-body dynamics due
to the variable stiffness and lengths of the cables7. Therefore, the Barrett WAM is ideal for testing
the applicability of model learning and analytic models8 on complex dynamics. For the physical
experiments we focus on the cosine trajectories as these trajectories produce dynamic movements
while character trajectories are mainly dominated by the gravitational forces. In addition, only the
dynamics of the four lower joints are learned because these joints dominate the dynamics and the
upper joints cannot be sufficiently excited to retrieve the dynamics parameters.

Figure 6c and d show the tracking error on the cosine trajectories using the the simulated Barrett
WAM while Figure 6e and f show the tracking error of the physical Barrett WAM. It is important
to note, that the simulation only simulates the rigid-body dynamics not including the direct cables
drives and the simulation parameters are inconsistent with the parameters of the analytic model.
Therefore, the analytic model is not optimal. On the training trajectories executed on the physical
system the FF-NN performs better compared to DeLaN and the analytic model. DeLaN achieves
slightly better tracking error than the analytic model, which uses the same rigid-body assumptions
as DeLaN. That shows DeLaN can learn a dynamics model of the WAM but is limited by the model
assumptions of Lagrangian Mechanics. These assumptions cannot represent the dynamics of the

7The cable drives and cables could bemodelled simplistically using two joints connected bymassless spring.
8The analytic model of the Barrett WAM is obtained using a publicly available URDF (JHU LCSR, 2018)

9

Published as a conference paper at ICLR 2019

1 1.25 1.5 1.75 2 2.25 2.5

Velocity Scale

10−1

100

101

102

103

104

M
ea

n
T

ra
ck

in
g

E
rr

or

(a)

Test Data

2 DoF Robot - Cosine 0

1 1.25 1.5 1.75 2 2.25 2.5

Velocity Scale

10−1

100

101

102

103

104

(b)

Test Data

2 DoF Robot - Cosine 1

1 1.25 1.5 1.75 2 2.25

Velocity Scale

10−1

100

101

102

103

104

(c)

Test Data

Sim WAM - Cosine 0

1 1.25 1.5 1.75 2 2.25

Velocity Scale

10−1

100

101

102

103

104

(d)

Test Data

Sim WAM - Cosine 1

1 1.25 1.5 1.75 2

Velocity Scale

10−1

100

101

102

103

104

(e)

Test Data

Barrett WAM - Cosine 2

1 1.25 1.5 1.75 2

Velocity Scale

10−1

100

101

102

103

104

(f)

Test Data

Barrett WAM - Cosine 3

DeLaN

FF-NN

RNE

Figure 6: The tracking error of the cosine trajectories for the simulated 2-dof robot (a & b), the
simulated (c & d) and the physical Barrett WAM (e & f). The feed-forward neural network and
DeLaN are trained only on the trajectories at a velocity scale of 1×. Afterwards the models are tested
on the same trajectories with increased velocities to evaluate the extrapolation to new velocities.

cable drives. When comparing to the simulated results, DeLaN and the FF-NN perform comparable
but significantly better than the analytic model. These simulation results show that DeLaN can learn
an accurate model of the WAM, when the underlying assumptions of the physics prior hold. The
tracking performance on the physical system and the simulation indicate that DeLaN can learn a
model within the model class of the physics prior but also inherits the limitations of the physics
prior. For this specific experiment the FF-NN can locally learn correlations of the torques w.r.t. q, Ûq
and Üq while such correlation cannot be represented by the network topology of DeLaN because such
correlation should, by definition of the physics prior, not exist.

When extrapolating to the identical trajectories with higher velocities (gray area of Figure 6) the
tracking error of the FF-NNdeterioratesmuch faster compared toDeLaN, because the FF-NNoverfits
to the training data. The tracking error of the analytic model remains constant and demonstrates
the guaranteed extrapolation of the analytic models. When comparing the simulated results, the
FF-NN cannot extrapolate to the new velocities and the tracking error deteriorates similarly to the
performance on the physical robot. In contrast to the FF-NN, DeLaN can extrapolate to the higher
velocities and maintains a good tracking error. Even further, DeLaN obtains a better tracking error
compared the analytic model on all velocity scales. This low tracking error on all test trajectories
highlights the improved extrapolation of DeLaN compared to other model learning approaches.

6 Conclusion

We introduced the concept of incorporating a physics prior within the deep learning framework
to achieve lower sample complexity and better extrapolation. In particular, we proposed Deep
Lagrangian Networks (DeLaN), a deep network on which Lagrangian Mechanics is imposed. This
specific network topology enabled us to learn the system dynamics using end-to-end training while
maintaining physical plausibility. We showed that DeLaN is able to learn the underlying physics
from a super-imposed signal, as DeLaN can recover the contribution of the inertial-, gravitational
and centripetal forces from sensor data. The quantitative evaluation within a real-time control loop
assessing the tracking error showed that DeLaN can learn the system dynamics online, obtains lower
sample complexity and better generalization compared to a feed-forward neural network. DeLaN can
extrapolate to new trajectories as well as to increased velocities, where the performance of the feed-
forward network deteriorates due to the overfitting to the training data. When applied to a physical
systems with complex dynamics the bounded representational power of the physics prior can be
limiting. However, this limited representational power enforces the physical plausibility and obtains
the lower sample complexity and substantially better generalization. In future work the physics prior
should be extended to represent a wider system class by introducing additional non-conservative
forces within the Lagrangian.

Acknowledgments

This project has received funding from the European Union’s Horizon 2020 research and innovation
program under grant agreement No #640554 (SKILLS4ROBOTS). Furthermore, this research was
also supported by grants from ABB, NVIDIA and the NVIDIA DGX Station.

10

Published as a conference paper at ICLR 2019

References
Alin Albu-Schäffer. Regelung von Robotern mit elastischen Gelenken am Beispiel der DLR-
Leichtbauarme. PhD thesis, Technische Universität München, 2002.

Christopher G Atkeson, Chae H An, and John M Hollerbach. Estimation of inertial parameters of
manipulator loads and links. The International Journal of Robotics Research, 5(3):101–119,
1986.

Wayne J Book. Recursive lagrangian dynamics of flexible manipulator arms. The International
Journal of Robotics Research, 3(3):87–101, 1984.

Sylvain Calinon, Florent D’halluin, Eric L Sauser, Darwin GCaldwell, and Aude GBillard. Learning
and reproduction of gestures by imitation. IEEE Robotics & AutomationMagazine, 17(2):44–54,
2010.

Eduardo F Camacho and Carlos Bordons Alba. Model predictive control. Springer Science &
Business Media, Berlin, Heidelberg, 2013.

Younggeun Choi, Shin-Young Cheong, and Nicolas Schweighofer. Local online support vector
regression for learning control. In International Symposium on Computational Intelligence in
Robotics and Automation, pp. 13–18. IEEE, 2007.

Erwin Coumans andYunfei Bai. Pybullet, a pythonmodule for physics simulation for games, robotics
and machine learning. http://pybullet.org, 2016–2018.

Carlos Canudas de Wit, Bruno Siciliano, and Georges Bastin. Theory of robot control. Springer
Science & Business Media, 2012.

Dua Dheeru and Efi Karra Taniskidou. UCI machine learning repository, 2017. URL http:
//archive.ics.uci.edu/ml.

Roy Featherstone. Rigid Body Dynamics Algorithms. Springer-Verlag, Berlin, Heidelberg, 2007.
ISBN 0387743146.

Joao P Ferreira, Manuel Crisostomo, A Paulo Coimbra, and Bernardete Ribeiro. Simulation control
of a biped robot with support vector regression. In IEEE International Symposium on Intelligent
Signal Processing, pp. 1–6. IEEE, 2007.

Zheng Geng, Leonard S Haynes, James D Lee, and Robert L Carroll. On the dynamic model and
kinematic analysis of a class of stewart platforms. Robotics and autonomous systems, 9(4):
237–254, 1992.

C. Leslie Golliday and Hooshang Hemami. An approach to analyzing biped locomotion dynamics
and designing robot locomotion controls. IEEE Transactions on Automatic Control, 22(6):
963–972, December 1977. ISSN 0018-9286. doi: 10.1109/TAC.1977.1101650.

Donald T Greenwood. Advanced dynamics. Cambridge University Press, 2006.

Masahiko Haruno, Daniel MWolpert, and Mitsuo Kawato. Mosaic model for sensorimotor learning
and control. Neural computation, 13(10):2201–2220, 2001.

Hooshang Hemami and Bostwick Wyman. Modeling and control of constrained dynamic systems
with application to biped locomotion in the frontal plane. IEEE Transactions on Automatic
Control, 24(4):526–535, August 1979. ISSN 0018-9286. doi: 10.1109/TAC.1979.1102105.

Benjamin F Hobbs and Ann Hepenstal. Is optimization optimistically biased? Water Resources
Research, 25(2):152–160, 1989.

Petros A Ioannou and Jing Sun. Robust adaptive control, volume 1. Prentice-Hall, 1996.

M Jansen. Learning an accurate neural model of the dynamics of a typical industrial robot. In
International Conference on Artificial Neural Networks, pp. 1257–1260, 1994.

11

http://pybullet.org
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Published as a conference paper at ICLR 2019

JHU LCSR JHU LCSR. Barrett model containing the 7-dof urdf, 2018. URL https://github.
com/jhu-lcsr/barrett_model.

S Mohammad Khansari-Zadeh and Aude Billard. Learning stable nonlinear dynamical systems with
gaussian mixture models. IEEE Transactions on Robotics, 27(5):943–957, 2011.

Juš Kocijan, RoderickMurray-Smith, Carl Edward Rasmussen, and Agathe Girard. Gaussian process
model based predictive control. In American Control Conference, volume 3, pp. 2214–2219.
IEEE, 2004.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In Advances in Neural Information Processing Systems, pp. 1097–1105,
2012.

Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. Artificial neural networks for solving
ordinary and partial differential equations. IEEE Transactions on Neural Networks, 9(5):987–
1000, 1998.

Isaac E Lagaris, Aristidis C Likas, and Dimitris G Papageorgiou. Neural-network methods for
boundary value problems with irregular boundaries. IEEE Transactions on Neural Networks, 11
(5):1041–1049, 2000.

Fernando Díaz Ledezma and Sami Haddadin. First-order-principles-based constructive network
topologies: An application to robot inverse dynamics. In IEEE-RAS International Conference
on Humanoid Robotics, 2017, pp. 438–445. IEEE, 2017.

Ian Lenz, Ross A Knepper, and Ashutosh Saxena. Deepmpc: Learning deep latent features for model
predictive control. In Robotics: Science and Systems, 2015.

Kai Liu, Frank Lewis, Guy Lebret, and David Taylor. The singularities and dynamics of a stewart
platform manipulator. Journal of Intelligent and Robotic Systems, 8(3):287–308, 1993.

Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. Pde-net: Learning pdes from data. arXiv
preprint arXiv:1710.09668, 2017.

JohnYSLuh,MichaelWWalker, andRichard PCPaul. On-line computational scheme formechanical
manipulators. Journal of Dynamic Systems, Measurement, and Control, 102(2):69–76, 1980.

K Miller. The lagrange-based model of delta-4 robot dynamics. Robotersysteme, 8:49–54, 1992.

VolodymyrMnih, KorayKavukcuoglu, David Silver, Andrei ARusu, Joel Veness,MarcGBellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529, 2015.

Duy Nguyen-Tuong and Jan Peters. Using model knowledge for learning inverse dynamics. In
International Conference on Robotics and Automation, pp. 2677–2682, 2010.

DuyNguyen-Tuong and Jan Peters. Model learning for robot control: a survey. Cognitive Processing,
12(4):319–340, 2011.

Duy Nguyen-Tuong, Matthias Seeger, and Jan Peters. Model learning with local gaussian process
regression. Advanced Robotics, 23(15):2015–2034, 2009.

Maziar Raissi and George Em Karniadakis. Hidden physics models: Machine learning of nonlinear
partial differential equations. Journal of Computational Physics, 357:125–141, 2018.

Maziar Raissi, Paris Perdikaris, and George EmKarniadakis. Physics informed deep learning (part i):
Data-driven solutions of nonlinear partial differential equations. arXiv preprint arXiv:1711.10561,
2017.

Elmar Rueckert, Moritz Nakatenus, Samuele Tosatto, and Jan Peters. Learning inverse dynamics
models in o (n) time with lstm networks. In IEEE-RAS International Conference on Humanoid
Robotics, pp. 811–816. IEEE, 2017.

12

https://github.com/jhu-lcsr/barrett_model
https://github.com/jhu-lcsr/barrett_model

Published as a conference paper at ICLR 2019

Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin Riedmiller,
Raia Hadsell, and Peter Battaglia. Graph networks as learnable physics engines for inference and
control. arXiv preprint arXiv:1806.01242, 2018.

Stefan Schaal, Christopher G Atkeson, and Sethu Vijayakumar. Scalable techniques from nonpara-
metric statistics for real time robot learning. Applied Intelligence, 17(1):49–60, 2002.

Bruno Siciliano and Oussama Khatib. Springer handbook of robotics. Springer, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. Nature, 550(7676):354, 2017.

Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning algorithm for solving partial
differential equations. arXiv preprint arXiv:1708.07469, 2017.

Mark W Spong. Modeling and control of elastic joint robots. Journal of dynamic systems, mea-
surement, and control, 109(4):310–318, 1987.

Jo-Anne Ting, Michael Mistry, Jan Peters, Stefan Schaal, and Jun Nakanishi. A bayesian approach
to nonlinear parameter identification for rigid body dynamics. In Robotics: Science and Systems,
pp. 32–39, 2006.

Ben Williams, Marc Toussaint, and Amos J Storkey. Modelling motion primitives and their timing
in biologically executed movements. In Advances in Neural Information Processing Systems 20,
pp. 1609–1616. 2008.

Kemin Zhou, John Comstock Doyle, Keith Glover, et al. Robust and optimal control, volume 40.
Prentice Hall, New Jersey, 1996.

13

Published as a conference paper at ICLR 2019

Appendix A: Offline Benchmarks

1 2 4 6 8 10 12 14 16 18 20

Train Characters

10−2

10−1
M

S
E

(a)

Offline Training Error

DeLaN

SI

FF-NN

1 2 4 6 8 10 12 14 16 18 20

Train Characters

10−2

10−1

M
S

E

(b)

Offline Testing Error

Figure 7: The mean squared error averaged of 20 seeds on the training- (a) and test-set (b) of the
character trajectories for the two joint robot. The models are trained offline using n characters and
tested using the remaining 20− n characters. The training samples are corrupted with white noise,
while the performance is tested on noise-free trajectories.

To evaluate the performance of DeLaN without the control task, DeLaN was trained offline on previ-
ously collected data and evaluated using the mean squared error (MSE) on the test and training set.
For comparison, DeLaN is compared to the system identification approach (SI) described by Atkeson
et al. (1986), a feed-forward neural network (FF-NN) and the Recursive Newton Euler algorithm
(RNE) using an analytic model. For this comparison, onemust point out that the system identification
approach relies on the availability of the kinematics, as the Jacobians and transformations w.r.t. to
every link must be known to compute the necessary features. In contrast, neither DeLaN nor the
FF-NN require this knowledge and must implicitly also learn the kinematics.

Figure 7 shows the MSE averaged over 20 seeds on the character data set executed on the two-joint
robot. For this data set, the models are trained using noisy samples and evaluated on the noise-free
and previously unseen characters. The FF-NN performs the best on the training set, but overfits
to the training data. Therefore, the FF-NN does not generalize to unseen characters. In contrast,
the SI approach does not overfit to the noise and extrapolates to previously unseen characters. In
comparison, the structure of DeLaN regularizes the training and prevents the overfitting to the
corrupted training data. Therefore, DeLaN extrapolates better than the FF-NN but not as good as the
SI approach. Similar results can be observed on the cosine data set using the Barrett WAM simulated
in SL (Figure 8 a, b). The FF-NN performs best on the training trajectory but the performance
deteriorates when this network extrapolates to higher velocities. SI performs worse on the training
trajectory but extrapolates to higher velocities. In comparison, DeLaN performs comparable to the
SI approach on the training trajectory, extrapolates significantly better than the FF-NN but does not
extrapolate as good as the SI approach. For the physical system (Figure 8 c, d), the results differ from
the results in simulation. On the physical system the SI approach only achieves the same performance
as RNE, which is significantly worse compared to the performance of DeLaN and the FF-NN. When
evaluating the extrapolation to higher velocities, the analytic model and the SI approach extrapolate
to higher velocities, while the MSE for the FF-NN significantly increases. In comparison, DeLaN
extrapolates better compared to the FF-NN but not as good as the analytic model or the SI approach.

This performance difference between the simulation and physical system can be explained by the
underlying model assumptions and the robustness to noise. While DeLaN only assumes rigid-
body dynamics, the SI approach also assumes the exact knowledge of the kinematic structure. For
simulation both assumptions are valid. However, for the physical system, the exact kinematics are
unknown due to production imperfections and the direct cable drives applying torques to flexible
joints violate the rigid-body assumption. Therefore, the SI approach performs significantly worse
on the physical system. Furthermore, the noise robustness becomes more important for the physical
system due to the inherent sensor noise. While the linear regression of the SI approach is easily
corrupted by noise or outliers, the gradient based optimization of the networks is more robust to
noise. This robustness can be observed in Figure 9, which shows the correlation between the variance
of Gaussian noise corrupting the training data and the MSE of the simulated and noise-free cosine

14

Published as a conference paper at ICLR 2019

1 1.25 1.5 1.75 2

Velocity Scale

10−3

10−2

10−1

100

101

102

103

M
S

E

(a)

Test Data

SL Barrett WAM - Cosine 0

1 1.25 1.5 1.75 2

Velocity Scale

10−3

10−2

10−1

100

101

102

103

M
S

E

(b)

Test Data

SL Barrett WAM - Cosine 1

1 1.25 1.5 1.75 2

Velocity Scale

10−3

10−2

10−1

100

101

102

103

M
S

E

(c)

Test Data

Barrett WAM - Cosine 0

1 1.25 1.5 1.75 2

Velocity Scale

10−3

10−2

10−1

100

101

102

103

M
S

E

(d)

Test Data

Barrett WAM - Cosine 1

SI

DeLaN

FF-NN

RNE

Figure 8: The mean squared error of the cosine trajectories for the simulated (a, b) and the physical
Barrett WAM (c and d). The system identification approach, feed-forward neural network and
DeLaN are trained offline using only the trajectories at a velocity scale of 1×. Afterwards the models
are tested on the same trajectories with increased velocities to evaluate the extrapolation to new
velocities.

trajectories. With increasing noise levels, the MSE of the SI approach increases significantly faster
compared to the models learned using gradient descent.

Concluding, the extrapolation of DeLaN to unseen trajectories and higher velocities is not as good
as the SI approach but significantly better than the generic FF-NN. This increased extrapolation
compared to the generic network is achieved by the Lagrangian Mechanics prior of DeLaN. Even
though this prior promotes extrapolation, the prior also hinders the performance on the physical
robot, because the prior cannot represent the dynamics of the direct cable drives. Therefore, DeLaN
performs worse than the FF-NN, which does not assume any model structure. However, DeLaN
outperforms the SI approach on the physical system, which also assumes rigid-body dynamics and
requires the exact knowledge of the kinematics.

10−3 10−2 10−1

Noise Variance σ2

10−2

10−1

100

101

M
S

E

Noise Robustness

RNE

DeLaN

FF-NN

SI

Figure 9: The mean squared error on the simulated and noise-free cosine trajectories with velocity
scale of 1x. For offline training the samples are corrupted using i.i.d. noise sampled from a
multivariate Normal distribution with the variance of σ2I.

15

Published as a conference paper at ICLR 2019

Appendix B: Complete Online Results

PD-Controller

a

RNE

b
c

d
e

g
h

l
m

n
o

p
q

r
s

u
v

w
y

z

DeLaN
n = 1

DeLaN
n = 2

DeLaN
n = 4

DeLaN
n = 6

DeLaN
n = 8

DeLaN
n = 10

DeLaN
n = 12

FF-NN
n = 1

FF-NN
n = 2

FF-NN
n = 4

FF-NN
n = 6

FF-NN
n = 8

FF-NN
n = 10

FF-NN
n = 12

Figure 10: The qualitative performance for the analytic baselines, the feed forward neural network
and DeLaN for different number of random training characters. The desired trajectories are shown
in red.

16

Published as a conference paper at ICLR 2019

a
b

c
d

e
g

h
l

m
n

o
p

q
r

s
u

v
w

y
z

Character

10
2

10
1

10
0

10
1

10
2

10
3

Tracking Error

DeLaN
FF-NN

PD-Controller
RNE

Figure 11: The average performance of DeLaN and the feed forward neural network for each
character. The columns of the boxplots correspond to different numbers of training characters, i.e.,
n = 1, 2, 4, 6, 8, 10, 12.

17

	Introduction
	Related Work
	Preliminaries: Lagrangian Mechanics
	Incorporating Lagrangian Mechanics into Deep Learning
	Symmetry and Positive Definiteness of H
	Deriving the derivatives
	Computing the Derivatives

	Experimental Evaluation: Learning an Inverse Dynamics Model for Robot Control
	Simulated Robot Experiments
	Physical Robot Experiments

	Conclusion

