TU Darmstadt / ULB / TUprints

Aberration-Corrected Analytical Transmission Electron Microscopy of Light Elements in Complex Oxides: Application and Methodology

Zhou, Dan (2016)
Aberration-Corrected Analytical Transmission Electron Microscopy of Light Elements in Complex Oxides: Application and Methodology.
Technische Universität Darmstadt
Ph.D. Thesis, Primary publication

[img]
Preview
Text
Dan PhD thesis 2016 January 13.pdf
Copyright Information: CC BY-NC-ND 3.0 Unported - Creative Commons, Attribution, NonCommercial, NoDerivs.

Download (19MB) | Preview
Item Type: Ph.D. Thesis
Type of entry: Primary publication
Title: Aberration-Corrected Analytical Transmission Electron Microscopy of Light Elements in Complex Oxides: Application and Methodology
Language: English
Referees: van Aken, Prof. Dr. Peter A. ; Koch, Prof. Dr. Christoph T.
Date: 13 January 2016
Place of Publication: Darmstadt
Date of oral examination: 14 December 2015
Abstract:

The advent of aberration correctors for electron optical lenses at the end of 20th century has brought atomic resolution analysis of the materials into a new era. In this thesis, the new possibilities of application and methodology on aberration-corrected analytical transmission electron microscopy (TEM) of light elements in complex oxides are explored by experiments and image simulations, with the emphasis on annular bright-field (ABF) imaging. The arrangement and bonding of light elements, like lithium (Li) and oxygen (O), in complex oxides plays a crucial rule in the material’s properties, however the characterization of the materials remains challenging. In recent years ABF imaging has become a popular imaging technique owing to its ability to map both light and heavy elements. I start from the application of ABF on qualitatively determining O’s distribution in ZrO2-La2/3Sr1/3MnO3 (LSMO) pillar–matrix thin films, together with the application of high-angle annular dark-field (HAADF) and electron energy-loss spectroscopy (EELS) to obtain a fuller picture of the investigated complex oxide. After that, the methodology study of ABF imaging, concerning the quantitative determination of atom column position and concentration, is presented. The accuracy of atom column position determination is of great importance for investigating atomic structure defects like elastic and plastic strains. Atomic-scale control of the synthesis of complex oxide materials envisages the atomic-scale properties and requires the knowledge of atomic-scale characterization. The ZrO2-LSMO pillar–matrix thin films were found to show anomalous magnetic and electron transport properties controlled by the amount of ZrO2. With the application of an aberration–corrected analytical transmission electron microscope (TEM), structure and interfacial chemistry of the system, especially of the pillar–matrix interface were revealed at atomic resolution. In addition, three types of Mn segregated antiphase boundaries (APBs) connecting ZrO2 pillars were investigated by HAADF and ABF imaging. The local atomic structure, chemical composition, cation valence and electric field were determined at atomic-scale. These results provide detailed information for future studies of macroscopic properties of these materials. Moreover, a consequence of aberration correctors is the high electron dose rate in the scanning mode. This can lead to radiation-induced modifications of materials. I studied the electron beam induced reconstruction of three types of APBs. With the utilization of HAADF scanning transmission electron microscopy (STEM), ABF STEM and EELS, the motion of both heavy and light element columns under moderate electron beam irradiation are revealed at atomic resolution. Besides, Mn segregated in the APBs was found to have reduced valence states, which can be directly correlated with oxygen loss. Charge states of the APBs are finally discussed based on these experimental results. This study provides support for the design of radiation engineering solid-oxide fuel cell materials. The determination of atom positions from atomically resolved transmission electron micrographs is fundamental for the analysis of crystal defects and strain. Contrast formation in ABF is partially governed by the phase of the electron wave, which renders the technique more sensitive to the tilt of the electron beam with respect to the crystal zone axis than in high-angle annular dark-field (HAADF) imaging. I show this sensitivity experimentally and use image simulations to quantify this effect. This is essential for future quantitative ABF studies including error estimation. Another aspect of quantification is the number of atoms in an atom column. The attempt to quantify Li concentration by ABF imaging has been done by simulations. The influences of convergence semi-angle, collection semi-angle, and defocus are explored, while direct correlation with experimental results need more theoretical investigations in this area. Semi-quantification of the Li amount was studied by EELS in case of the particle-size dependent delithiation process of LiFePO4. From the core-loss region and low-loss region analysis it is found that the sample with particle size of 25 nm delithiates homogeneously over the whole particle, whereas the 70 nm and 150 nm particles form an FePO4 core and a LiFePO4 shell. The practical considerations, like radiation damage, delocalization, interface effects and so on are also discussed.

Alternative Abstract:
Alternative AbstractLanguage

Am Ende des 20. Jahrhunderts gelang es, Korrektoren für Fehler elektronenoptischer Linsen zu realisieren. Damit begann eine neue Ära der Materialanalyse mit atomarer Auflösung. In dieser Arbeit werden die neuen Möglichkeiten der aberrationskorrigierten Transmissions-Elektronenmikroskopie (TEM) für die Analyse leichter Elemente sowohl experimentell als auch anhand von Bildsimulationen untersucht. Die chemische Bindung und die atomare Anordnung leichter Elemente, wie beispielsweise von Lithium (Li) oder Sauerstoff (O), spielen eine entscheidende Rolle für die Eigenschaften in komplexen Oxiden. Dagegen ist die Charakterisierung leichter Elemente nach wie vor eine besondere Herausforderung. Im Bereich der TEM wurde vor wenigen Jahren die „annular bright-field“-Abbildung (ABF) eingeführt mit deren Hilfe eine Abbildung sowohl schwerer als auch leichter Elemente ermöglicht wird. Hier wende ich diese Methode auf die Bestimmung der atomaren Position von O-Atomen in ZrO2‒La2/3Sr1/3MnO3 (LSMO) an. Parallel dazu wird die Abbildung mit stark gestreuten Elektronen („high-angle annular dark-field“, HAADF) sowie die Elektronen-Energieverlustspektroskopie (EELS) zur vollständigen Charakterisierung angewandt. Diese Untersuchungen werden schließlich durch die quantitative Untersuchung der atomaren Position leichter Elemente mittels Bildsimulationen komplettiert. Die Genauigkeit der Positionsbestimmung ist von großer Bedeutung um beispielsweise die atomare Struktur von Defekten oder elastische bzw. plastische Dehnungen zu untersuchen. Das oben genannte Material ZrO2‒LSMO zeichnet sich durch säulenförmiges Wachstum von ZrO2-Ausscheidungen in der LSMO-Matrix aus. Dieses Material zeigt anomales Verhalten der elektrischen Leitfähigkeit, für welches die atomare Struktur und die chemische Bindung bedeutend sind. Mittels HAADF, ABF und EELS wird gezeigt, dass an den Grenzflächen zwischen den Phasen ausgeprägte Interdiffusion stattfindet. Zudem liegen die Manganatome, abhängig von ihrer Position, in unterschiedlichen Valenzzuständen vor. Weiterhin wurden Antiphasengrenzen gefunden die ZrO2-Säulen verbinden. Aus den gemessenen Daten wurden die Ladungszustände der Antiphasengrenzen bestimmt. Nach intensiver Bestrahlung der Antiphasengrenzen in ZrO2‒LSMO wurde mittels HAADF, ABF und EELS festgestellt, dass sich die atomare Struktur und die chemische Bindung in diesen Grenzflächen verändern. Dies zeigt sich durch die Bewegung von Atomsäulen sowie durch die Änderung des Valenzzustandes der Manganatome und einem damit einhergehenden Verlust von Sauerstoff. Mit Hilfe dieser Ergebnisse konnte auch die Änderung des Ladungszustandes der Antiphasengrenzen bestimmt werden. Diese atomaren Untersuchungen der bestrahlungsinduzierten Materialmodifikation könnten für die künftige Untersuchung von Strahlenschäden von Bedeutung sein. Schließlich wird die Konzentration von Li-Atomen in LiFePO4, einem vielversprechenden System für künftige Li-Batterien, untersucht. Hierzu wurde anhand von Bildsimulationen der Kontrast von Li-Säulen in ABF-Bildern untersucht wobei die Anzahl der Li-Atome in den Säulen variiert wurde. Außerdem wurden die Strahlkonvergenz, der Detektionswinkel des ABF-Detektors sowie der Defokus als freie Parameter zugelassen. Experimentell wird mittels EELS der Prozess der Beladung und Entladung von feinkörnigem LiFePO4 untersucht. Die Ergebnisse aus dem Bereich niedriger und hoher Energieverluste zeigen, dass die Be-/Entladung bei kleinen Korngrößen (25 nm) homogen über das Kornvolumen erfolgt. Dagegen bildet sich bei größeren Körnern ein FePO4-Kern mit einer umgebenden LiFePO4-Schale aus. Experimentelle Grenzen wie Strahlenschädigung, Delokalisierung sowie Grenzflächeneffekte werden diskutiert.

German
URN: urn:nbn:de:tuda-tuprints-52363
Classification DDC: 500 Science and mathematics > 500 Science
500 Science and mathematics > 530 Physics
Divisions: 11 Department of Materials and Earth Sciences
11 Department of Materials and Earth Sciences > Material Science
Date Deposited: 20 Jan 2016 09:23
Last Modified: 09 Jul 2020 01:12
URI: https://tuprints.ulb.tu-darmstadt.de/id/eprint/5236
PPN: 369768728
Export:
Actions (login required)
View Item View Item