TU Darmstadt / ULB / TUprints

TEM study of the structural evolution of ionic solids from amorphous to polycrystalline phases in the case of alkaline earth difluoride systems: Experimental exploration of energy landscape

Mu, Xiaoke (2013)
TEM study of the structural evolution of ionic solids from amorphous to polycrystalline phases in the case of alkaline earth difluoride systems: Experimental exploration of energy landscape.
Technische Universität
Ph.D. Thesis, Primary publication

[img]
Preview
Text
thesis.pdf
Copyright Information: CC BY-NC-ND 2.5 Generic - Creative Commons, Attribution, NonCommercial, NoDerivs .

Download (49MB) | Preview
Item Type: Ph.D. Thesis
Type of entry: Primary publication
Title: TEM study of the structural evolution of ionic solids from amorphous to polycrystalline phases in the case of alkaline earth difluoride systems: Experimental exploration of energy landscape
Language: German
Referees: Kleebe, Prof. Dr. Hans-Joachim ; van Aken, Prof. Dr. Peter A.
Date: 5 September 2013
Place of Publication: Darmstadt
Date of oral examination: 20 August 2013
Abstract:

The discovery and synthesis of new polymorphs of solids is one of the most attractive tasks for chemists in the development of new materials. To transfer the current synthesis means from empirically random search to rational design based on theoretic prediction has become one of the most desired goals in material science. To achieve this requires a systematic study of the free energy of the interesting materials. The present work here will report a transmission electron microscopy study in structure evolution from amorphous to polycrystalline phases of alkaline earth fluorides, by which the energy landscape of the fluoride materials are experimentally explored. Structural disorder and distortion play a significant role in structure evolution, especially when amorphous phases are involved. An experimentally precise characterization of the disordered structure is crucial for a correct understanding of the phase transformation. An important quantity in such characterization is the so-called pair-distribution function (PDF), which represents the distribution of atomic pair distances in the investigated material and can therefore also provide insight into the structural distortions in crystalline materials. PDF measurements currently gains increasing application in various fields of material science, especially in neutron and X-ray diffraction. In comparison, electron diffraction can be performed in standard transmission electron microscopes and is thus easily accessible. It also offers the possibility of obtaining data from small material volumes which may be crucial in hetero-structured specimens. However, the PDF technique based on electron diffraction is still not a routine as in X-ray synchrotron and neutron radiation measurements due to the difficulties caused by strong dynamic scattering of electrons, inelastic scattering contribution, and difficult large-angle acquisition. This work carefully studied the electron diffraction based PDF technique. Modifications of the technique were focused on the large-angle data acquisition in energy-filtered diffraction experiments and data processing as well as multiple scattering correction, by which the reliability of the experimental PDF was remarkably improved. In this work, the modified PDF technique based on in-situ electron diffraction was used to investigate the structure evolution in the phase transformation processes of alkaline earth fluorides. By combination of molecular dynamic simulations the experimental PDFs were clearly interpreted. The structure evolution was further comprehended and finally interpreted within the energy landscape concept. High-resolution transmission electron microscopy, electron energy-loss spectroscopy, and energy-filtered transmission electron microscopy were also involved in the studies for investigation of crystalline structures. In addition to the experiments, structural modelling based on reversed Monte-Carlo method was studied. An approach based on a modified reverse Monte-Carlo method for overcoming the difficulty caused by the dynamic scattering was reported.

Alternative Abstract:
Alternative AbstractLanguage

Die Entdeckung und Synthese neuer polymorpher Festkörper mit dem Ziel der Entwicklung neuer Materialien ist eine der wichtigsten Aufgaben in der Chemie. Entscheidend ist hierbei, die zufällige empirische Suche durch rationales Design (basierend auf theoretischen Vorhersagen) zu ersetzen. Um dies zu erreichen, benötigt man eine systematische Studie der freien Energie des interessierenden Materialsystems. In dieser Arbeit wurde mittels Transmissionselektronmikroskopie (TEM) der Strukturübergang von der amorphen zur polykristallinen Phase in Erdalkalifluoriden untersucht. Dies ermöglichte Einblicke in die Freie-Energie-Landschaft der Fluoride. Strukturelle Fehlordnung und Verzerrung spielen eine wichtige Rolle in der Strukturbildung, insbesondere wenn amorphe Phasen beteiligt sind. Deshalb ist eine genaue experimentelle Charakterisierung der ungeordneten Strukturen entscheidend für das korrekte Verständnis der Phasenübergänge. Dabei spielt die sogenannte Paarverteilungsfunktion (PVF) eine zentrale Rolle. Sie repräsentiert die Häufigkeit von Atompaarabständen im untersuchten Material und erlaubt damit Einblicke in die atomistische Struktur. PVF-Messungen werden speziell in der Neutronen- und Röntgenbeugung in zunehmendem Maßs e in verschiedenen Bereichen der Materialforschung eingesetzt. Im Gegensatz zu diesen Verfahren kann Elektronenbeugung in herkömmlichen Transmissionselektronenmikroskopen durchgeführt werden welche einfach zugänglich sind. Darüber hinaus kann Elektronenbeugung auf kleine Materialvolumina angewandt werden was für die Untersuchung feinskaliger heterostrukturierter Proben extrem hilfreich ist. Jedoch ist die PVF-Bestimmung mittels Elektronenbeugung immer noch kein Routineverfahren. Dies liegt insbesondere an den starken dynamischen Effekten bei der Beugung von Elektronen, dem Einfluss inelastischer Elektronenstreuung und der Schwierigkeit, großs e Streuwinkel zu erfassen. In dieser Arbeit wurden diese drei Probleme untersucht, Lösungen erarbeitet und somit die PVF-Bestimmung mittels Elektronenbeugung optimiert. Dabei kam die energiefilternde TEM zum Einsatz und es wurde eine Mehrfachstreukorrektur angewandt, welche die Zuverlässigkeit der experimentellen PVF deutlich verbesserte. Mit Hilfe dieser verbesserten Verfahren wurde in dieser Arbeit Elektronenbeugung während des Anlassens (d.h. in situ) von bei tiefen Temperaturen abgeschiedenen Fluoriden durchgeführt. In Verbindung mit molekulardynamischen Simulationen konnten experimentelle PVFen eindeutig interpretiert werden. Die Strukturbildung wurde im Rahmen des Energielandschaftskonzepts interpretiert. Als ergänzende Methoden zur Untersuchung der kristallinen Phasen wurden die hochauflösende TEM, Elektronen-Energieverlustspektroskopie (EELS) und energiegefilterte Transmissionselektronmikroskopie (EFTEM) eingesetzt. Darüber hinaus wurde Strukturverfeinerung mittels inverser Monte-Carlo-Methoden studiert. Es wurde eine modifizierte inverse Monte-Carlo-Methode vorgestellt, welche zur überwindung der Schwierigkeiten durch die dynamische Beugung beitragen könnte.

German
URN: urn:nbn:de:tuda-tuprints-36019
Classification DDC: 500 Science and mathematics > 500 Science
500 Science and mathematics > 530 Physics
500 Science and mathematics > 540 Chemistry
Divisions: 11 Department of Materials and Earth Sciences > Material Science > Structure Research
Date Deposited: 10 Sep 2013 13:06
Last Modified: 09 Jul 2020 00:31
URI: https://tuprints.ulb.tu-darmstadt.de/id/eprint/3601
PPN: 386305706
Export:
Actions (login required)
View Item View Item