TU Darmstadt / ULB / TUprints

Thermisch und kohärent: Erzeugung neuartiger Lichtzustände mittels Quantenpunkt-Superlumineszenzdioden

Blazek, Martin (2012)
Thermisch und kohärent: Erzeugung neuartiger Lichtzustände mittels Quantenpunkt-Superlumineszenzdioden.
Technische Universität Darmstadt
Ph.D. Thesis, Primary publication

[img]
Preview
Dissertation_Martin_Blazek_FB5_Matrikelnr1120031 - PDF (A4_115Seiten)
Dissertation_genehmigt_Update_JQE_2012-08-20.pdf
Copyright Information: In Copyright.

Download (2MB) | Preview
Item Type: Ph.D. Thesis
Type of entry: Primary publication
Title: Thermisch und kohärent: Erzeugung neuartiger Lichtzustände mittels Quantenpunkt-Superlumineszenzdioden
Language: German
Referees: Elsäßer, Prof. Wolfgang ; Walther, Prof. Thomas
Date: 14 August 2012
Place of Publication: Darmstadt
Date of oral examination: 19 December 2011
Abstract:

Bisher war die Emission einer Lichtquelle kohärent, inkohärent oder partiell kohärent, also ein Mischzustand aus den beiden Grenzfällen. Eine unabhängige Manipulation des Kohärenzgrads in erster und zweiter Ordnung auf optischen Zeitskalen war nicht möglich, und begründete so ein fundamentales Paradigma der Quantenoptik, wonach spektral-breitbandiges, thermisches Licht nicht kohärent in zweiter Ordnung sein kann.

Dieses fundamentale Paradigma der Quantenoptik wurde in dieser Arbeit widerlegt.

Über die Kontrolle des Photonenemissionsprozesses wurde der Kohärenzgrad in zweiter Ordnung unabhängig vom Kohärenzgrad in erster Ordnung modifiziert. Hierdurch gelang die erstmalige, experimentelle Erzeugung von Licht, welches gleichzeitig thermisch in erster und laserartig in zweiter Ordnung ist und damit eine faszinierende, neue Klasse von hybrid-kohärenten Lichtzuständen darstellt.

Konkret wurde breitbandiges, nahinfrarotes Licht mit einer spektralen Breite von 12,5THz bei einem zentralen Kohärenzgrad von 1 in erster und einem kontinuierlich durchstimmbaren Kohärenzgrad von 2,0 bis 1,33 in zweiter Ordnung demonstriert.

Dazu wurde ein wohldefinierter Eingriff in die delikate Emissionsbalance zwischen spontaner und stimulierter Emission in einer verstärkt-spontan emittierenden Quantenpunkt-Superlumineszenzdiode (QP-SLD) vorgenommen. Ausgehend vom thermischen Emissionscharakter der QP-SLD bei Raumtemperatur wurde der Anteil kohärenzerzeugender, stimulierter Emissionsprozesse durch eine Reduktion der thermischen Verlustraten bei tiefen Temperaturen erreicht. Hierdurch ließ sich der spektrale Gewinn der Emission erhöhen und der Kohärenzgrad in zweiter Ordnung schließlich bis auf 1,33 reduzieren, und dies, ohne dabei die spektrale Breitbandigkeit der Emission einzuschränken.

Die Zunahme im spektralen Gewinn konnte über die Anpassung eines bestehenden phänomenologischen Modells, dass die Verteilung der Ladungsträger auf die einzelnen Energieniveaus beschreibt, erklärt werden und gewährte so Einblicke in die einzigartige, stark temperaturabhängige, spektrale Ladungsträgerdynamik des inhomogen-verbreiterten, niedrigdimensionalen Quantenpunktsystems. So führt die Kondensation von Ladungsträgern im absoluten, energetischen Grundzustand des Quantenpunktensembles bei der ausgezeichneten Temperatur von 190K zu einer Maximierung der Besetzungswahrscheinlichkeit und des spektralen Gewinns. Bei Temperaturen unterhalb von 190K kollabiert die globale Fermi-Verteilung. In der Folge bricht die Ladungsträgerdiffusion zwischen den individuellen Quantenpunkten zusammen und der spektrale Gewinn nimmt mit sinkender Temperatur wieder ab.

Die Erzeugung des hybrid-kohärenten Lichtzustands stimuliert damit einerseits das fundamentale physikalische Interesse nach der Entstehung von Licht, fördert andererseits aber auch das Verständnis niederdimensionaler, Halbleiter-Ladungsträgersysteme und kombiniert so die faszinierenden Welten der Quantenoptik und der Quantenpunkte.

Basierend auf der gewonnenen Kenntnis der Kohärenzeigenschaften der QP-SLD in zweiter Ordnung auf Femotsekunden-Zeitskalen konnte zudem der Zusammenhang zwischen den ultraschnellen Intensitätskorrelationen und dem Intensitätsrauschen einer Lichtquelle geklärt und zur Rauschoptimierung genutzt werden.

Beim Vergleich des Intensitätsrauschens der QP-SLD mit den kohärenten und thermischen Rauschmodellen zeigte sich der thermische Emissionscharakter der QP-SLD bei Raumtemperatur. Zusätzlich zum Schrotrauschen einer kohärenten Quelle tritt bei thermischen Quellen Überschussrauschen auf, das von den Kohärenzeigenschaften erster Ordnung abhängt. Für den Betrieb der QP-SLD bei Raumtemperatur wurden Strategien zur Rauschreduktion abgeleitet, die auf die Modifikation der Kohärenzeigenschaften erster Ordnung abzielten. Mit dem Verfahren der spektral-selektiven Rückkopplung und der inkohärenten Lichtquellenkopplung konnten, über die Erhöhung der spektralen Breite, Rauschreduktionen von bis zu 30% erreicht werden.

Bei tiefen Temperaturen zeigten sich im Intensitätsrauschen jedoch starke Abweichungen vom thermischen Rauschmodell. Im Fall der hybrid-kohärenten Emission bei 190K lag das relative Intensitätsrauschen der QP-SLD um einen Faktor von 20 unter dem thermischen Rauschniveau und verlangte nach einer verallgemeinerten Rauschbeschreibung, die neben den Kohärenzeigenschaften erster Ordnung auch den Kohärenzgrad in zweiter Ordnung berücksichtigt. Hierzu wurde ein Kohärenzkoeffizient eingeführt, der den Kohärenzgrad in zweiter Ordnung charakterisiert, den Beitrag des Überschussrauschens im thermischen Rauschmodell auf den Anteil der spontanen Emissionsprozesse beschränkt und so die bisherigen kohärenten und thermischen Grenzfälle kontinuierlich ineinander überführt. Letztlich konnte das Rauschverhalten hybrid-kohärenter Lichtquellen durch das verallgemeinerte Rauschmodell präzise vorhergesagt werden.

Der hybrid-kohärente Lichtzustand eröffnet einerseits eine weite Spielwiese für vielfältige wissenschaftliche Untersuchungen zur Quantennatur des Lichts, ist andererseits aber auch für die Anwendung in optischen Systemen interessant. So wird beispielsweise auf dem Gebiet der interferometrischen Messtechnik eine spektral-breitbandige und rauscharme Lichtquelle benötigt. Basierend auf dem vorgestellten Rauschmodell lassen sich hier vielversprechende Strategien zur Optimierung zukünftiger Bauteile ableiten.

Im Rahmen der Arbeit wurde hybrid-kohärentes Licht erstmals experimentell realisiert und charakterisiert. Zur Beschreibung des modifizierten Rauschverhaltens wurde ein verallgemeinertes Rauschmodell vorgestellt. Es konnten jedoch nicht alle Fragen vollständig geklärt werden. So müssen zukünftige Untersuchungen zeigen, ob sich eine allgemeine Schwelle für den spektralen Gewinn angeben lässt, oberhalb der hybrid-kohärente Emission eintritt. Hier bietet sich neben dem Pumpstrom und der Temperatur auch die optische Rückkopplung als zusätzlicher Freiheitsgrad zur Modifikation des Kohärenzgrads in zweiter Ordnung an. Insbesondere können dabei die Intensitätskorrelationen im Übergangsbereich von verstärkt-spontaner Emission zu rückkopplungsinduzierter Lasertätigkeit analysiert werden, um zu einem tieferen Verständnis des hybrid-kohärenten Lichtzustands beitragen. Auch ist ungeklärt, ob der zentrale Kohärenzgrad von 1,33 in zweiter Ordnung ein fundamentales Limit bei der Erzeugung hybrid-kohärenten Lichts darstellt, oder ob speziell optimierte Lichtquellen die breitbandige Emission zukünftig sogar am Standardquantenlimit, also mit g(2)(0)=1 ermöglichen. Abschließend sei noch auf die Untersuchung spektral-aufgelöster Intensitätskorrelationen hingewiesen, die gerade im Fall der Quantenpunkt-Gewinnmedien faszinierende Einblicke in die Welt niedrigdimensionaler Quantensysteme verspricht.

Alternative Abstract:
Alternative AbstractLanguage

In Quantum Optics, there has always been the paradigm that a monochromatic laser emits photons with an intensity correlation of one whereas spectrally broadband incoherent light from a thermal source exhibits an enhanced intensity correlation of two, inevitably connected to photon bunching.

In this thesis, we break this fundamental paradigm by realizing spectrally broadband light with a laser-like normalized intensity correlation coefficient of 1.33 in a single optoelectronic emitter.

By controlling the photon emission process in a temperature-tuned Quantum Dot superluminescent diode we reduce the intensity correlations from 2 to 1.33 thus approaching the ultimate classical laser limit of 1, while maintaining the incoherent emission character in first-order with a spectral bandwidth of 12.5THz. Thereby, we stimulate not only the Quantum Optics community addressing the perpetual scientific interest in the quantum nature of light, but also develop an ideal, intensity-stabilized light source for low coherent light applications and many other interdisciplinary fields of science.

The first experimental realization of hybrid-coherent light was achieved by a careful modification of the delicate photon emission process hierarchy of a Quantum Dot superluminescent diodes’ amplified spontaneous emission. Utilizing the fascinating and unique temperature-dependence of zero-dimensional semiconductor charge carrier systems, we increase the fraction of stimulated emission by an enhancement of spectral gain at low temperatures that finally increases the degree of 2nd-order coherence with a reduced zero-lag value of g(2)(0)=1.33.

To explain the generation and also the tunability of our hybrid-coherent state of light, we adopt a phenomenological model that predicts the condensation of injected charge carriers into the globally lowest energy state of the strongly inhomogeneously-broadened semiconductor Quantum Dot ensemble at a temperature of 190K, thereby combining the fascinating worlds of Quantum Optics and semiconductor Quantum Dots.

By the joint investigations of coherence and relative intensity noise properties we demonstrate, that the reduced photon-bunching on a femtosecond time scale at 190K also induces reduced intensity noise in the nanosecond regime. We find an intensity noise reduction of 13dB below the noise level of that of a thermal source which is typically assumed for ASE sources.

This motivates the formulation of a generalized intensity noise description for ASE sources that contains the Shot Noise contribution but also accounts for first- and second-order coherence properties reflecting the process of light generation to properly describe the intensity noise behavior of hybrid-coherent light. We introduce a coherence-coefficient to the existing noise description of a thermal light source that quantifies the deviation from an ideal chaotic source in 2nd-order and unifies the noise description of thermal and coherent sources. Here, we find excellent agreement between the hybrid-coherent intensity noise values and this new description with the perspective of particular interesting consequences for the realization of low-noise broadband emitters.

We presented the first experimental realization of a new, fascinating class of light states and introduced a generalized intensity noise description. Thereby, this thesis serves as a pioneering starting point for future investigations, where the most obvious are the definition of a general threshold condition in the spectral gain for the generation of hybrid coherent light and to completely reach the classical correlation limit of g(2)(0)=1 with spectrally broadband emission. For a deeper understanding of the hybrid-coherent photon state the analysis of the transition from amplified-spontaneous- to laser emission induced by optical feedback is suggested. Exhibiting a particular interesting spectral emission-state-hierarchy, Quantum Dot gain media provide the unique possibility to investigate spectrally-resolved intensity correlations in an equally intense two-state emission regime from a single light source promising a deeper insight into quantized semiconductor charge carrier systems.

English
Uncontrolled Keywords: Kohärenz, Licht, Photonen, Superlumineszenzdiode, Hybrid-Licht, Photonenstatistik, Intensitätskorrelationen, Halbleiterlichtquellen, Intensitätsrauschen, Quantenpunkte
Alternative keywords:
Alternative keywordsLanguage
second-order correlation function, photon statistics, intensity noise, hybrid-coherent light, superluminescent diodes, quantum dot, coherence, light, photons,English
URN: urn:nbn:de:tuda-tuprints-30790
Classification DDC: 500 Science and mathematics > 530 Physics
Divisions: 05 Department of Physics > Institute of Applied Physics
Date Deposited: 21 Aug 2012 07:12
Last Modified: 07 Dec 2012 12:05
URI: https://tuprints.ulb.tu-darmstadt.de/id/eprint/3079
PPN: 38625625X
Export:
Actions (login required)
View Item View Item