Die Entwicklung der Halbleitertechnologie hat in den zurückliegenden fünf Jahrzehnten zur aggressiven Verkleinerung der Bauelementdimensionen in integrierten Schaltkreisen (ICs) geführt. Durch die stetige Verkleinerung von Metall-Oxid-Halbleiter-Feldeffekt-Transistoren (MOSFETs) und durch Implementierung von hoch-komplexen Systemen unter Zuhilfenahme neuer Materialien sind ICs schneller und energieeffizienter geworden, zudem wurde die Packungsdichte erhöht. Jedoch ist man hierdurch immer näher an die physikalischen Grenzen der Skalierung gestoßen, die überwunden werden müssen, um diese Entwicklung weiter fortsetzen zu können.
Mit zunehmender Verkleinerung der Bauelemente in den Nanometerbereich sind konventionelle Techniken der Prozesskontrolle und Charakterisierung immer weniger geeignet. Daher müssen neue Verfahren für die Gewinnung von Informationen über strukturelle und elektrische Eigenschaften von Materialien und Geometrien mit Nanometerauflösung entwickelt werden. Dies ist gegenwärtig, beim Übergang von Siliziumdioxid Gate-Dielektrika zu solchen mit einer höheren Dielektrizitätskonstante (sogenannten High-K-Dielektrika), besonders relevant. Die vorliegende Arbeit leistet einen Beitrag zur Auswahl geeigneter, neuartiger analytischer Methoden zur Prozesskontrolle und behandelt deren Implementierung in die Halbleitertechnologie. Hier findet die Rasterkraftmikroskopie (AFM) Anwendung, die aufgrund der hochauflösenden Abbildungsmöglichkeiten eine geeignete Technik zur Untersuchung neuartiger High-K-Dielektrika darstellt und Fragen zur Prozessintegration dieser Materialien in einen geeigneten MOSFET-Herstellungsprozess klären hilft. Besonderes Augenmerk wird auf die Rasterkraftmikroskopie mit elektrisch leitfähiger Messspitze (C-AFM) gesetzt, welches die simultane Messung von Topographie und elektrischer Leitfähigkeit an der Probenoberfläche ermöglicht. Zuerst wird die Rasterkraftmikroskopie (AFM und C-AFM) zur Entwicklung und Optimierung einer modernen Isolationstechnologie für Bauelemente, der Grabenisolation (Shallow Trench Isolation, STI) eingesetzt, die für die Integration von High-K-Dielektrika in hoch-skalierten integrierten Schaltungen (ULSI) relevant ist. Erstmalig wird der Nachweis der Nitrid-Erosion, einem bekannten Problem im Zusammenhang mit STI nach dem chemisch-mechanischen Planarisieren (CMP), in zuverlässiger Weise erreicht. Die C-AFM-Technik wird außerdem zur Entwicklung und Evaluierung von zwei unterschiedlichen Techniken zur Optimierung der Planarität erfolgreich eingesetzt, dem Oxid-Rückätz-Verfahren (oxide etchback) und der inversen Nitrid-Maskierung (reverse nitride masking). Weiterhin konnte die C-AFM-Technik für die Untersuchung von zwei grundsätzlich verschiedenen High-K-Dielektrika eingesetzt werden. Es konnte gezeigt werden, dass die erste Generation der High-Dielektrika, bestehend aus Titanoxid als High-K-Material auf einer dünnen Siliziumdioxid-Pufferschicht vom Si-Substrat getrennt, eine technologisch einfache aber elektrisch unbefriedigende Lösung darstellt. C-AFM Messungen zeigten Mängel in den untersuchten Titanoxid - Siliziumdioxid-Doppelschichtstrukturen hinsichtlich der Defektdichte und des Leckstromverhaltens. Die zweite Generation der High-K-Dielektrika, die epitaktisch gewachsenen kristallinen Seltenerd-Oxide, konnten deutlich bessere Eigenschaften mittels C-AFM nachgewiesen werden, insbesondere hinsichtlich der thermischen Stabilität. Dennoch wurden auch in diesen High-K-Materialien Unvollkommenheiten beobachtet. So konnte erstmalig der Ladungseinfang und die Generation von Einfangstellen in einem High-K-Dielektrikum im Nanometerbereich mittel C-AFM direkt an der Oberfläche beobachtet werden. Des Weiteren wird die Kompatibilität der epitaktisch gewachsenen kristallinen Seltenerd-Oxide mit Standard-CMOS-Prozessen untersucht. So wurden z.B. der Reinigung mit säurehaltigen Lösungen, Unverträglichkeiten ermittelt, die eine Neuentwicklung geeigneter Reinigungsverfahren notwendig machte. Änderungen der Filmeigenschaften wurden auch bei anderen wichtigen Prozessschritten festgestellt, die unter Umständen auf eine Unvereinbarkeit der High-K-Dielektrika mit der Standard-CMOS Prozessführung (Gate-First) hindeuten.
Um zu bestimmen, inwieweit die mittels C-AFM beobachteten nanoskaligen Veränderungen im Dielektrikum das Verhalten des makroskopischen Bauelements beeinflussen, wurden epitaktische High-K-Schichten aus Praseodymoxid (Pr2O3) erstmalig vollständig in MOS-Transistoren integriert. C-AFM wurde zusätzlich zur Prozesskontrolle bei kritischen Schritten verwendet. Die elektrische Charakterisierung der voll funktionsfähigen Bauelemente mit Praseodymoxid (Pr2O3), zeigte, dass diese ersten High-K-MOSFETs deutliche Leistungseinbußen im Vergleich zur SiO2 Referenzbauelementen aufweisen. An großflächigen Bauelementen werden deutlich erhöhte Werte der Grenzflächenzustandsdichte, Gate-Leckströme und eine höhere Anfälligkeit für Ladungsträgereinfang beobachtet. Beim Versuch der Integration von anderen kristallinen Dielektrika, wie Neodymiumoxid (Nd2O3 ), konnten trotz Prozessoptimierung im Rahmen der Gate-First Technologie keine funktionierenden MOSFETs realisiert werden. Es wird gefolgert, dass die Degradation der High-K Gate-Dielektrika zumindest teilweise eine Folge des Integrationsprozesses sind. Nach Durchführung von weiteren Analysen konnten die kritischen Prozessschritte identifiziert werden. Im Wesentlichen sind die Gatestrukturierung mittels reaktivem Ionenätzen (RIE), die Source/Drain-Ionen-Implantation und das Source/Drain-Aktivierung bei hoher Temperatur für die Degradierung des Dielektrikums verantwortlich. Der untrennbare Zusammenhang zwischen diesen Schritten und der konventionellen (Gate-First) Prozessierung führte zur Entwicklung eines neuartigen Gesamtprozesskonzeptes zur schonenden Integration der High-K-Dielektrika.
Unter Verwendung der Rasterkraftmikroskopie (AFM und C-AFM) wird eine sogenannte ‚Replacement-Gate-Technologie‘ (RGT) für MOS-Transistoren mit High-K-Dielektrika entwickelt und implementiert, um die Realisierbarkeit des Konzepts nachzuweisen und das Verbesserungspotential aufzuzeigen. Es konnte gezeigt werden, dass dank der geänderten Prozessfolge, in der das empfindliche High-K-Material erst nach allen aggressiven Prozessschritten eingefügt wird, die ursprünglich gute Qualität der High-K Dielektrika weitgehend erhalten bleibt. Es konnten deutliche Verbesserungen hinsichtlich der Stabilität der Einsatzspannung und der Grenflächenzustandsdichten erreicht werden. | German |