Schröder, Jörg ; Wick, Thomas ; Reese, Stefanie ; Wriggers, Peter ; Müller, Ralf ; Kollmannsberger, Stefan ; Kästner, Markus ; Schwarz, Alexander ; Igelbüscher, Maximilian ; Viebahn, Nils ; Bayat, Hamid Reza ; Wulfinghoff, Stephan ; Mang, Katrin ; Rank, Ernst ; Bog, Tino ; D’Angella, Davide ; Elhaddad, Mohamed ; Hennig, Paul ; Düster, Alexander ; Garhuom, Wadhah ; Hubrich, Simeon ; Walloth, Mirjam ; Wollner, Winnifried ; Kuhn, Charlotte ; Heister, Timo (2024)
A Selection of Benchmark Problems in Solid Mechanics and Applied Mathematics.
In: Archives of Computational Methods in Engineering : State of the Art Reviews, 2021, 28 (2)
doi: 10.26083/tuprints-00023961
Article, Secondary publication, Publisher's Version
Text
s11831-020-09477-3.pdf Copyright Information: CC BY 4.0 International - Creative Commons, Attribution. Download (7MB) |
Item Type: | Article |
---|---|
Type of entry: | Secondary publication |
Title: | A Selection of Benchmark Problems in Solid Mechanics and Applied Mathematics |
Language: | English |
Date: | 18 December 2024 |
Place of Publication: | Darmstadt |
Year of primary publication: | March 2021 |
Place of primary publication: | Dordrecht ; Berlin ; Heidelberg |
Publisher: | Springer |
Journal or Publication Title: | Archives of Computational Methods in Engineering : State of the Art Reviews |
Volume of the journal: | 28 |
Issue Number: | 2 |
DOI: | 10.26083/tuprints-00023961 |
Corresponding Links: | |
Origin: | Secondary publication DeepGreen |
Abstract: | In this contribution we provide benchmark problems in the field of computational solid mechanics. In detail, we address classical fields as elasticity, incompressibility, material interfaces, thin structures and plasticity at finite deformations. For this we describe explicit setups of the benchmarks and introduce the numerical schemes. For the computations the various participating groups use different (mixed) Galerkin finite element and isogeometric analysis formulations. Some programming codes are available open-source. The output is measured in terms of carefully designed quantities of interest that allow for a comparison of other models, discretizations, and implementations. Furthermore, computational robustness is shown in terms of mesh refinement studies. This paper presents benchmarks, which were developed within the Priority Programme of the German Research Foundation ‘SPP 1748 Reliable Simulation Techniques in Solid Mechanics—Development of Non-Standard Discretisation Methods, Mechanical and Mathematical Analysis’. |
Uncontrolled Keywords: | Mathematical and Computational Engineering |
Status: | Publisher's Version |
URN: | urn:nbn:de:tuda-tuprints-239616 |
Classification DDC: | 500 Science and mathematics > 510 Mathematics 600 Technology, medicine, applied sciences > 624 Civil engineering and environmental protection engineering |
Divisions: | 04 Department of Mathematics > Optimization |
Date Deposited: | 18 Dec 2024 12:48 |
Last Modified: | 18 Dec 2024 12:49 |
SWORD Depositor: | Deep Green |
URI: | https://tuprints.ulb.tu-darmstadt.de/id/eprint/23961 |
PPN: | |
Export: |
View Item |