TU Darmstadt / ULB / TUprints

Von den erblich-endlichen Mengen bis zu den Delta-Funktionen : Grundlegung einer widerspruchsfreien Nichtstandard-Mathematik

Zahn, Peter (2021)
Von den erblich-endlichen Mengen bis zu den Delta-Funktionen : Grundlegung einer widerspruchsfreien Nichtstandard-Mathematik.
doi: 10.26083/tuprints-00019223
Report, Primary publication, Publisher's Version

[img]
Preview
Text
zfcn-mit.pdf
Copyright Information: CC BY 4.0 International - Creative Commons, Attribution.

Download (513kB) | Preview
Item Type: Report
Type of entry: Primary publication
Title: Von den erblich-endlichen Mengen bis zu den Delta-Funktionen : Grundlegung einer widerspruchsfreien Nichtstandard-Mathematik
Language: German
Date: 2021
Place of Publication: Darmstadt
Collation: 52 Seiten
DOI: 10.26083/tuprints-00019223
Abstract:

Hereditarily finite sets can be constructed by the rules "construct 0" and "from a and b construct a{b}". For short we write {a,b,c} for 0{a}{b}{c}, e.g. Those sets together with the element relation satisfy the axioms of ZFC without the axiom of infinity. Certain of those sets can be considered to be natural numbers. We investigate an obviously consistent rule system which, however, is not a formal one. It containes a rule with infinitely many premises. By the rules of that system there is deducible the theory of hereditarily finite sets. From this result and a theorem of Jaques Herbrand it follows that a weakened version, zfc*, of ZFC is consistent. By an axiom of it there exists a set containing all natural numbers at least. From zfc* we infer some elementary facts of nonstandard analysis and also consider delta functions.

Status: Publisher's Version
URN: urn:nbn:de:tuda-tuprints-192235
Classification DDC: 500 Science and mathematics > 510 Mathematics
Divisions: 04 Department of Mathematics > Logic
Date Deposited: 09 Aug 2021 12:21
Last Modified: 15 Feb 2023 10:46
URI: https://tuprints.ulb.tu-darmstadt.de/id/eprint/19223
PPN: 485432226
Export:
Actions (login required)
View Item View Item