TU Darmstadt / ULB / TUprints

A Cyclic Orbifold Theory for Holomorphic Vertex Operator Algebras and Applications

Möller, Sven (2021)
A Cyclic Orbifold Theory for Holomorphic Vertex Operator Algebras and Applications.
doi: 10.26083/tuprints-00017356
Book, Primary publication, Publisher's Version

This is the latest version of this item.

[img]
Preview
Text
orbifold.pdf
Copyright Information: CC BY 4.0 International - Creative Commons, Attribution.

Download (1MB) | Preview
Item Type: Book
Type of entry: Primary publication
Title: A Cyclic Orbifold Theory for Holomorphic Vertex Operator Algebras and Applications
Language: English
Referees: Scheithauer, Prof. Dr. Nils ; Möller, Prof. Dr. Martin ; Höhn, Prof. Dr. Gerald
Date: 9 February 2021
Place of Publication: Darmstadt
Date of oral examination: 15 September 2016
Edition: minor revisions, as of Dec. 2020
DOI: 10.26083/tuprints-00017356
Corresponding Links:
Abstract:

In this thesis we develop an orbifold theory for a finite, cyclic group G acting on a suitably regular, holomorphic vertex operator algebra V. To this end we describe the fusion algebra of the fixed-point vertex operator subalgebra V^G and show that V^G has group-like fusion. Then we solve the extension problem for vertex operator algebras with group-like fusion.

We use these results to construct five new holomorphic vertex operator algebras of central charge 24 as lattice orbifolds, contributing to the classification of the V_1-structures of suitably regular, holomorphic vertex operator algebras of central charge 24.

As another application we present the BRST construction of ten Borcherds-Kac-Moody algebras whose denominator identities are completely reflective automorphic products of singular weight.

Alternative Abstract:
Alternative AbstractLanguage

In dieser Arbeit wird eine Orbifoldtheorie für eine endliche, zyklische Gruppe, die auf einer hinlänglich hübschen Vertexoperatoralgebra operiert, entwickelt. Hierzu wird die Fusionsalgebra der Fixpunktvertexoperatorunteralgebra V^G bestimmt und gezeigt, dass V^G gruppenartige Fusion hat. Dann wird das Erweiterungsproblem für Vertexoperatoralgebren mit gruppenartiger Fusion gelöst.

Diese Resultate werden genutzt um fünf neue holomorphe Vertexoperatoralgebren von zentraler Ladung 24 als Gitterorbifolds zu konstruieren, womit ein Beitrag zur Klassifikation der V_1-Strukturen von hinlänglich hübschen, holomorphen Vertexoperatoralgebren von zentraler Ladung 24 geleistet wird.

Als weitere Anwendung wird die BRST-Konstruktion von zehn Borcherds-Kac-Moody-Algebren präsentiert, deren Nenneridentitäten vollständig reflektive automorphe Produkte singulären Gewichts sind.

German
Uncontrolled Keywords: vertex operator algebras, orbifold theory, extension problem, generalised Kac-Moody algebras
Status: Publisher's Version
URN: urn:nbn:de:tuda-tuprints-173568
Classification DDC: 500 Science and mathematics > 510 Mathematics
Divisions: 04 Department of Mathematics > Algebra
04 Department of Mathematics > Algebra > Infinite dimensional Lie algebras, vertex algebras, automorphic forms
Date Deposited: 09 Feb 2021 08:49
Last Modified: 19 Sep 2023 18:02
URI: https://tuprints.ulb.tu-darmstadt.de/id/eprint/17356
PPN: 473914271
Export:

Available Versions of this Item

Actions (login required)
View Item View Item