TU Darmstadt / ULB / TUprints

Time-Periodic Solutions to Bidomain, Chemotaxis-Fluid, and Q-Tensor Models

Kreß, Klaus (2020)
Time-Periodic Solutions to Bidomain, Chemotaxis-Fluid, and Q-Tensor Models.
Technische Universität Darmstadt
doi: 10.25534/tuprints-00013505
Ph.D. Thesis, Primary publication

[img]
Preview
Text
Kress_Klaus_Dissertation.pdf
Copyright Information: CC BY-SA 4.0 International - Creative Commons, Attribution ShareAlike.

Download (1MB) | Preview
Item Type: Ph.D. Thesis
Type of entry: Primary publication
Title: Time-Periodic Solutions to Bidomain, Chemotaxis-Fluid, and Q-Tensor Models
Language: English
Referees: Hieber, Prof. Dr. Matthias ; Farwig, Prof. Dr. Reinhard
Date: 2020
Place of Publication: Darmstadt
Date of oral examination: 13 July 2020
DOI: 10.25534/tuprints-00013505
Abstract:

The main objective of this thesis is the investigation of different models arising from mathematical biology and fluid mechanics in the time-periodic setting. We consider the classical Keller-Segel model for chemotaxis as well as its coupling to a fluid whose motion is described by the Navier-Stokes equations. The second model we investigate is the bidomain system which describes the propagation of electrophysiological waves in the heart. The last model considered is the Beris-Edwards model of nematic liquid crystals.

Alternative Abstract:
Alternative AbstractLanguage

Das Hauptanliegen dieser Dissertation ist die Erforschung von verschiedenen Modellen, welche ihren Ursprung in der mathematischen Biologie und Fluidmechanik haben, im zeitperiodischen Setting. Wir untersuchen sowohl das klassische Keller-Segel Modell für Chemotaxis als auch dessen Kopplung zu den Navier-Stokes Gleichungen, welche die Strömung von viskosen Fluiden beschreiben. Das zweite betrachtete Modell, das Bidomain System, beschreibt die Ausbreitung von elektrophysiologischen Wellen im Herzen. Als letztes Modell untersuchen wir das Beris-Edwards Modell für nematische Flüssigkristalle.

German
URN: urn:nbn:de:tuda-tuprints-135050
Classification DDC: 500 Science and mathematics > 510 Mathematics
Divisions: 04 Department of Mathematics > Analysis > Angewandte Analysis
04 Department of Mathematics > Analysis > Partial Differential Equations and Applications
Date Deposited: 30 Sep 2020 11:26
Last Modified: 24 Aug 2022 08:13
URI: https://tuprints.ulb.tu-darmstadt.de/id/eprint/13505
PPN: 470936436
Export:
Actions (login required)
View Item View Item