TU Darmstadt / ULB / TUprints

A Contribution on the Transferability of Data-Driven Models for Bearing Fault Diagnosis

Bienefeld, Christoph (2024)
A Contribution on the Transferability of Data-Driven Models for Bearing Fault Diagnosis.
Technische Universität Darmstadt
doi: 10.26083/tuprints-00027475
Ph.D. Thesis, Primary publication, Publisher's Version

[img] Text
Dissertation_Bienefeld.pdf
Copyright Information: CC BY-SA 4.0 International - Creative Commons, Attribution ShareAlike.

Download (12MB)
Item Type: Ph.D. Thesis
Type of entry: Primary publication
Title: A Contribution on the Transferability of Data-Driven Models for Bearing Fault Diagnosis
Language: English
Referees: Kirchner, Prof. Dr. Eckhard ; Klingauf, Prof. Dr. Uwe
Date: 7 June 2024
Place of Publication: Darmstadt
Collation: 116, XXXIII Seiten
Date of oral examination: 7 May 2024
DOI: 10.26083/tuprints-00027475
Abstract:

In the automotive industry, the electrification of powertrains is steadily advancing. Additionally, in the context of increasingly automated driving functions, the requirements for safety against unforeseen failures of the vehicle subsystems are growing. Since a significant proportion of failures of electric machines are caused by rolling bearing faults, both their prevention and the early detection of emerging rolling bearing faults are important aspects of current research. A promising approach to meet the increasing safety requirements is the implementation of data-driven fault diagnosis. The foundation of such fault diagnosis is the application of condition monitoring based on at least one suitable measurement quantity. A particularly common variable for monitoring the condition of electric machines is vibration, which can be measured by mounting accelerometers at the structure of the machine. Based on the acquired data, Machine Learning (ML) methods enable fault diagnosis in an automated manner.

To build models based on supervised learning, training data is required, which has to comprehensively represent the faults to be detected. Collecting this data involves considerable effort, which is why data-driven approaches at the current state of research are only commercially viable for a limited proportion of applications. The profitability would be significantly increased if the models trained using data from one machine type could be transferred to other machine types. Obstacles to this transferability are the changed properties of the sensor signals when switching to a different machine type. Given this motivation, the present thesis examines the idea that the structural dynamic properties, which can vary between different machine types, can have a decisive influence on the measured vibrations.

To investigate the influence of differences in structural dynamics on the accuracy of the vibration-based, data-driven fault diagnosis, an experimental data set is acquired. For this purpose, artificially damaged rolling bearings are installed in an electric machine. During the experiments, the vibration acceleration is measured simultaneously at several sensor positions. Based on the acquired data set, various ML algorithms and feature generation methods are investigated to optimize the prediction accuracy of the fault diagnosis models. Using the resulting configurations, the transferability of the vibration-based fault diagnosis models to different sensor positions is evaluated, which represents the transfer to a different structural dynamic behavior. Based on this, two novel approaches are introduced in the present work, both of which aim to improve the previously assessed transferability of the models by incorporating domain knowledge from structural dynamics. The prediction accuracies achieved with these novel approaches show major improvements in terms of transferability. Accordingly, this work demonstrates novel methods to improve the transferability of data-driven fault diagnosis models between different systems with respect to varying structural dynamic properties.

Alternative Abstract:
Alternative AbstractLanguage

In der Automobilindustrie schreitet die Elektrifizierung der Antriebsstränge stetig voran. Zudem steigen vor dem Hintergrund zunehmend automatisierter Fahrfunktionen die Anforderungen an die Sicherheit vor unvorhergesehenen Ausfällen der Fahrzeug-Teilsysteme. Da ein signifikanter Anteil der Ausfälle elektrischer Antriebsmaschinen auf Wälzlagerschäden zurückzuführen ist, sind sowohl die Verhinderung derer Entstehung als auch die frühzeitige Erkennung bereits vorhandener Wälzlagerschäden wichtiger Bestandteil aktueller Forschung. Ein vielversprechender Ansatz, den steigenden Anforderungen zur Ausfallsicherheit gerecht zu werden, ist die Implementierung einer datengestützten Schadensdiagnose. Die Grundlage einer solchen Schadensdiagnose ist die Umsetzung einer Zustandsüberwachung basierend auf mindestens einer geeigneten Messgröße. Besonders verbreitet für die Zustandsüberwachung elektrischer Maschinen ist die Messung von Vibrationen, wozu Beschleunigungssensoren an der Struktur der Maschinen angebracht werden können. Basierend auf den erhobenen Daten ermöglicht die Anwendung von Maschinellem Lernen (ML) eine automatisierte Diagnose von Schäden.

Um Diagnosemodelle auf Basis des überwachten Lernens zu erstellen, werden Trainingsdaten benötigt, welche die zu erkennenden Schäden umfassend repräsentieren müssen. Die Erhebung solcher Daten kann mit erheblichem Aufwand verbunden sein, weshalb datengetriebene Ansätze nach derzeitigem Stand der Forschung nur für einen begrenzten Anteil der Anwendungsfälle wirtschaftlich rentabel sind. Die Rentabilität ließe sich deutlich erhöhen, wenn die mit den Daten eines Maschinentyps trainierten Modelle auf andere Maschinentypen übertragen werden könnten. Hinderlich für diese Übertragbarkeit sind die veränderten Eigenschaften der Sensorsignale beim Wechsel auf einen anderen Maschinentyp. Aus dieser Motivation heraus wird in der vorliegenden Arbeit der Gedanke untersucht, dass die strukturdynamischen Eigenschaften der Maschinen einen entscheidenden Einfluss auf die gemessenen Vibrationen haben können.

Um diesen Einfluss von Unterschieden in der Strukturdynamik auf die Genauigkeit der vibrationsbasierten, datengestützten Schadensdiagnose zu untersuchen, wird zunächst ein Versuchsdatensatz erhoben. Dazu werden künstlich geschädigte Wälzlager in einer elektrischen Maschine verbaut und die Vibrationen in Form der Schwingbeschleunigungen an mehreren Sensorpositionen erfasst. Auf der Grundlage dieses Datensatzes werden verschiedene ML-Algorithmen und Methoden zur Merkmalsgenerierung untersucht, um die Vorhersagegenauigkeit der Diagnosemodelle zu optimieren. Mit den resultierenden Konfigurationen wird die Übertragbarkeit der vibrationsbasierten Schadensdiagnosemodelle auf unterschiedliche Sensorpositionen evaluiert, was die Übertragbarkeit auf ein anderes strukturdynamisches Verhalten repräsentiert. Darauf aufbauend werden in dieser Arbeit zwei neuartige Ansätze vorgestellt, die beide darauf abzielen, die zuvor bewertete Übertragbarkeit der Modelle durch die Einbindung von Domänenwissen aus der Strukturdynamik zu verbessern. Die mit den neuen Ansätzen erreichten Vorhersagegenauigkeiten zeigen erhebliche Verbesserungen in Bezug auf die Übertragbarkeit. Dementsprechend demonstriert diese Arbeit neuartige Methoden zur Verbesserung der Übertragbarkeit datengetriebener Schadensdiagnosemodelle zwischen verschiedenen Systemen im Hinblick auf sich unterscheidende strukturdynamische Eigenschaften.

German
Status: Publisher's Version
URN: urn:nbn:de:tuda-tuprints-274757
Classification DDC: 600 Technology, medicine, applied sciences > 620 Engineering and machine engineering
Divisions: 16 Department of Mechanical Engineering > Institute for Product Development and Machine Elements (pmd)
Date Deposited: 07 Jun 2024 12:02
Last Modified: 10 Jun 2024 05:26
URI: https://tuprints.ulb.tu-darmstadt.de/id/eprint/27475
PPN: 518988015
Export:
Actions (login required)
View Item View Item