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Kurzfassung

Kurzfassung
In der Automobilindustrie schreitet die Elektrifizierung der Antriebsstränge stetig voran.
Zudem steigen vor dem Hintergrund zunehmend automatisierter Fahrfunktionen die An-
forderungen an die Sicherheit vor unvorhergesehenen Ausfällen der Fahrzeug-Teilsysteme.
Da ein signifikanter Anteil der Ausfälle elektrischer Antriebsmaschinen auf Wälzlager-
schäden zurückzuführen ist, sind sowohl die Verhinderung derer Entstehung als auch
die frühzeitige Erkennung bereits vorhandener Wälzlagerschäden wichtiger Bestandteil
aktueller Forschung. Ein vielversprechender Ansatz, den steigenden Anforderungen zur
Ausfallsicherheit gerecht zu werden, ist die Implementierung einer datengestützten Scha-
densdiagnose. Die Grundlage einer solchen Schadensdiagnose ist die Umsetzung einer
Zustandsüberwachung basierend auf mindestens einer geeigneten Messgröße. Besonders
verbreitet für die Zustandsüberwachung elektrischer Maschinen ist die Messung von Vi-
brationen, wozu Beschleunigungssensoren an der Struktur der Maschinen angebracht
werden können. Basierend auf den erhobenen Daten ermöglicht die Anwendung von
Maschinellem Lernen (ML) eine automatisierte Diagnose von Schäden.
Um Diagnosemodelle auf Basis des überwachten Lernens zu erstellen, werden Trainings-
daten benötigt, welche die zu erkennenden Schäden umfassend repräsentieren müssen.
Die Erhebung solcher Daten kann mit erheblichem Aufwand verbunden sein, weshalb
datengetriebene Ansätze nach derzeitigem Stand der Forschung nur für einen begrenzten
Anteil der Anwendungsfälle wirtschaftlich rentabel sind. Die Rentabilität ließe sich deut-
lich erhöhen, wenn die mit den Daten eines Maschinentyps trainierten Modelle auf andere
Maschinentypen übertragen werden könnten. Hinderlich für diese Übertragbarkeit sind
die veränderten Eigenschaften der Sensorsignale beim Wechsel auf einen anderen Maschi-
nentyp. Aus dieser Motivation heraus wird in der vorliegenden Arbeit der Gedanke unter-
sucht, dass die strukturdynamischen Eigenschaften der Maschinen einen entscheidenden
Einfluss auf die gemessenen Vibrationen haben können.
Um diesen Einfluss von Unterschieden in der Strukturdynamik auf die Genauigkeit der
vibrationsbasierten, datengestützten Schadensdiagnose zu untersuchen, wird zunächst
ein Versuchsdatensatz erhoben. Dazu werden künstlich geschädigte Wälzlager in einer
elektrischen Maschine verbaut und die Vibrationen in Form der Schwingbeschleunigun-
gen an mehreren Sensorpositionen erfasst. Auf der Grundlage dieses Datensatzes wer-
den verschiedene ML-Algorithmen und Methoden zur Merkmalsgenerierung untersucht,
um die Vorhersagegenauigkeit der Diagnosemodelle zu optimieren. Mit den resultieren-
den Konfigurationen wird die Übertragbarkeit der vibrationsbasierten Schadensdiagno-
semodelle auf unterschiedliche Sensorpositionen evaluiert, was die Übertragbarkeit auf
ein anderes strukturdynamisches Verhalten repräsentiert. Darauf aufbauend werden in
dieser Arbeit zwei neuartige Ansätze vorgestellt, die beide darauf abzielen, die zuvor
bewertete Übertragbarkeit der Modelle durch die Einbindung von Domänenwissen aus
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der Strukturdynamik zu verbessern. Die mit den neuen Ansätzen erreichten Vorher-
sagegenauigkeiten zeigen erhebliche Verbesserungen in Bezug auf die Übertragbarkeit.
Dementsprechend demonstriert diese Arbeit neuartige Methoden zur Verbesserung der
Übertragbarkeit datengetriebener Schadensdiagnosemodelle zwischen verschiedenen Sys-
temen im Hinblick auf sich unterscheidende strukturdynamische Eigenschaften.
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Abstract

Abstract
In the automotive industry, the electrification of powertrains is steadily advancing. Addi-
tionally, in the context of increasingly automated driving functions, the requirements for
safety against unforeseen failures of the vehicle subsystems are growing. Since a signifi-
cant proportion of failures of electric machines are caused by rolling bearing faults, both
their prevention and the early detection of emerging rolling bearing faults are important
aspects of current research. A promising approach to meet the increasing safety require-
ments is the implementation of data-driven fault diagnosis. The foundation of such
fault diagnosis is the application of condition monitoring based on at least one suitable
measurement quantity. A particularly common variable for monitoring the condition
of electric machines is vibration, which can be measured by mounting accelerometers
at the structure of the machine. Based on the acquired data, Machine Learning (ML)
methods enable fault diagnosis in an automated manner.
To build models based on supervised learning, training data is required, which has
to comprehensively represent the faults to be detected. Collecting this data involves
considerable effort, which is why data-driven approaches at the current state of research
are only commercially viable for a limited proportion of applications. The profitability
would be significantly increased if the models trained using data from one machine type
could be transferred to other machine types. Obstacles to this transferability are the
changed properties of the sensor signals when switching to a different machine type.
Given this motivation, the present thesis examines the idea that the structural dynamic
properties, which can vary between different machine types, can have a decisive influence
on the measured vibrations.
To investigate the influence of differences in structural dynamics on the accuracy of the
vibration-based, data-driven fault diagnosis, an experimental data set is acquired. For
this purpose, artificially damaged rolling bearings are installed in an electric machine.
During the experiments, the vibration acceleration is measured simultaneously at several
sensor positions. Based on the acquired data set, various ML algorithms and feature gen-
eration methods are investigated to optimize the prediction accuracy of the fault diagno-
sis models. Using the resulting configurations, the transferability of the vibration-based
fault diagnosis models to different sensor positions is evaluated, which represents the
transfer to a different structural dynamic behavior. Based on this, two novel approaches
are introduced in the present work, both of which aim to improve the previously as-
sessed transferability of the models by incorporating domain knowledge from structural
dynamics. The prediction accuracies achieved with these novel approaches show major
improvements in terms of transferability. Accordingly, this work demonstrates novel
methods to improve the transferability of data-driven fault diagnosis models between
different systems with respect to varying structural dynamic properties.

XIV



1. Introduction

1. Introduction
Automated monitoring of technical systems is becoming increasingly important due to
the growing demand for condition-based maintenance. Compared to conventional main-
tenance strategies, the condition-based maintenance approach offers advantages in terms
of increased system reliability, improved sustainability and overall more economical main-
tenance [1]. Moreover, automated condition monitoring is becoming increasingly acces-
sible thanks to the widespread availability of modern technologies in the context of Big
Data, Artificial Intelligence (AI) and the Internet of Things (IoT). These technologies
are redefining how data from different sources can be collected, analyzed, and leveraged
to gain valuable insights into the condition of technical systems [2, pp.108-110].
Historically, the discipline of Prognostics and Health Management (PHM) initially fo-
cused on safety-critical systems (e.g. aviation) or systems with restricted accessibility
for maintenance work (e.g. wind turbines). Nowadays, there is an increasing demand
to equip various technical systems with condition monitoring in order to enable mod-
ern maintenance strategies. In particular, industries such as energy, manufacturing and
transportation are increasingly using condition monitoring technology to optimize their
operation [3, pp.5-7].

1.1. Motivation
In the automotive industry, two major trends are currently emerging: The electrification
of vehicles and the automation of driving functions. The future of highly and fully
automatet driving (SAE level 4 and 5 according to [4]) is leading to an increasing number
of fleet vehicles without private owners being responsible for maintenance. Especially
concerning fully automated driving and the advent of commercial fleets of Robo-Taxis [5],
there is a need to fulfill high requirements for the safety and reliability of the vehicle
subsystems [6]. Important approaches to achieve this are the design of redundancy-
based, fail-operational systems, or the implementation of intelligent systems to enable
predictive diagnosis and control strategies [7]. In electric vehicles, electric machines (e-
machines) are one of the main subsystems whose unexpected failures pose a safety risk for
vehicle occupants and other road users. Therefore, reliable methods for monitoring the
condition of these e-machines and enabling automated fault diagnosis are demanded [8].
Previous studies have shown that, depending on the specific mechanical design and its
application, a significant proportion of e-machine failures can be attributed to bearing
failures [9]. Within today’s e-machines, rolling bearings in particular are commonly used
to support the rotor with low friction. Harsh operating conditions such as high loads,
extreme temperatures, lubricant contamination or electrical current passage can lead to
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fatigue, wear, corrosion, electrical erosion or other modes of bearing failure. These can
ultimately result in the failure of the entire drive system and potentially cause accidents
or costly repairs. Therefore, early detection of emerging bearing faults is crucial to
ensure the safe and reliable operation of electric vehicles [10].
Although there are established standards and guidelines for the design and maintenance
of bearings according to their rating life [11], these ratings are based on statistical distri-
butions of fatigue life. They are thus limited in accounting for different types of failure
modes or unexpected events [12, p.21]. The current practice for condition monitoring of
rotating machinery is often based on measuring vibrations, using acceleration as the pri-
mary measurement signal. Vibration analysis has proven effective in detecting specific
types of faults at an early stage [13, pp.47-52].
To enable automated monitoring and fault diagnosis of technical systems, the emergence
of Machine Learning (ML) methods has opened up new opportunities. ML algorithms
can learn from historical data and identify patterns or anomalies that may indicate
potential faults or deviations from normal behavior. Based on the acquisition of health-
indicative measurement data, a large number of technical systems can be monitored
automatically using ML algorithms without the need for human experts to continu-
ously analyze the data [14, pp.4-5]. However, challenges arise regarding the transfer-
ability of data-driven ML models from one technical system to another. For vibration-
and ML-based fault diagnosis models, the current state of research requires additional
health-indicative data to be collected for each system to train the algorithm, which is
time-consuming, resource-intensive, and costly. Even the most modern data-driven ap-
proaches using Deep Transfer Learning cannot entirely eliminate this need for additional
data [14, p.163]. Therefore, it is necessary to develop methods that can be used to gen-
erate transferable fault diagnosis models, allowing for cost-effective model deployments
across different technical systems.

1.2. Aim of Research
The overarching goal of this research is to advance the generation of transferable, data-
driven fault diagnosis models. In particular, the application of rolling bearing fault
diagnosis for vehicle e-machines is examined. Therefore, the aim is to develop methods
for effectively using vibration measurement data and ML techniques combined with do-
main knowledge, to create models that can be transferred to different systems without
the need for retraining. By achieving this, significant time, resources, and costs asso-
ciated with the development of new data-driven fault diagnosis models for each new
system would be saved.
The present work follows a systematic step-by-step approach to accomplish this aim.
Initially, multiple methods for processing vibration signals are investigated, focusing on
their effectiveness in generating relevant features for ML-based fault diagnosis. This
involves investigations on a variety of mathematical feature formulations. The perfor-
mance of several feature sets is evaluated using a comprehensive data set of vibration
signals acquired from an e-machine test bench. A fault diagnosis model, considered
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to be generated according to the current state of research, is then evaluated concern-
ing its transferability within defined boundaries. Based upon this, a key aspect of the
present work focuses on developing extended methodological approaches to improve the
transferability of ML-based fault diagnosis models by incorporating domain knowledge.
These newly proposed approaches are used to generate models based on the e-machine
test bench data. Finally, the new approaches are evaluated regarding their models’
transferability in comparison to the original baseline approach.
Overall, the present work aims to contribute to the development of transferable fault di-
agnosis models, specifically focusing on vibration-based fault diagnosis of rolling bearings
in the exemplary application of automotive e-machines. To achieve this, the subsequent
chapters are structured in the following way: First, chapter 2 outlines the fundamental
state of research with a focus on condition monitoring of rolling bearings and data-
driven approaches. Building upon this, research gap and research questions are derived
in chapter 3. Additionally, the further thesis outline is presented in more detail there.
Subsequently, chapter 4 introduces the fundamental methods necessary for the further
course of this work. Chapters 5 to 9 focus on the data generation and processing as well
as model generation, evaluation and discussion with the aim of answering the formulated
Research Questions. Finally, a conclusion is drawn in chapter 10.
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2. State of Research
This chapter provides fundamentals on the current state of research for condition moni-
toring of rolling bearings, focusing on vibration-based and data-driven techniques. Firstly,
section 2.1 presents the distinction between different maintenance strategies, motivating
the need for condition monitoring. Secondly, section 2.2 introduces into several tech-
niques for condition monitoring of rolling bearings in e-machines. Thirdly, section 2.3
provides an overview on the typical failure modes of rolling bearings as well as their
kinematics. Additionally, publicly availiable data sets for bearing fault diagnosis are
listed. Fourthly, section 2.4 addresses fundamentals on data-driven approaches for fault
diagnosis. Finally, section 2.5 presents approaches from the state-of-research to enhance
transferability of data-driven models.

2.1. Maintenance Strategies
The need for reliable condition monitoring and fault diagnosis results from modern
maintenance strategies within the discipline of PHM. To explain this need, the present
section first presents the common maintenance strategies. Subsequently, the demand for
methods that enable automated fault diagnosis is derived.
According to DIN EN 13306, the definition of maintenance comprises the ”combination
of all technical, administrative and managerial actions during the life cycle of an item
intended to retain it in, or restore it to, a state in which it can perform the required
function” [15, p.8]. By implementing appropriate maintenance activities, the lifespan
of a component can be extended or the time until repair can be prolonged. Effective
maintenance can therefore reduce the frequency of necessary maintenance activities and
their negative consequences such as downtime, ultimately leading to a reduction in
associated costs [16]. There are various categorizations of maintenance strategies. To
distinguish between them, the present work refers to the definitions from DIN EN 13306.
Accordingly, the main types of maintenance strategies and their interrelationships are
illustrated in figure 2.1.
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Figure 2.1.: Differentiation of maintenance types; according to [15, p.58].

At the upper distinction level, maintenance can be divided into corrective and preventive
maintenance. Here, corrective maintenance is a strategy where maintenance actions are
only taken after a component fails or reaches a damage threshold. While initially cost-
effective, this strategy leads to high downtime and costs when a failure occurs. Therefore,
it is not suitable for critical components and should only be used with redundant systems
or readily available resources [17, pp.27-28].
In contrast to corrective maintenance, all strategies belonging to the preventive main-
tenance branch are intended to intervene before a failure occurs. In particular, pre-
determined maintenance involves repairing or replacing components at set intervals,
regardless of their condition. This strategy reduces the risk of equipment failure and
allows for planned maintenance actions. However, it can lead to premature component
replacement and thus to insufficient sustainability and increased costs. Implementing
this strategy is challenging due to varying failure behaviors and expected lifespans of
different components [18, p.2].
In comparison to both of the previously outlined strategies, the use of a non-predictive,
condition-based maintenance strategy achieves short downtimes by adjusting mainte-
nance intervals based on the observation of degradation. This requires condition moni-
toring to enable quick detection of deviations from normal behavior. According to the
definition in DIN EN 13306, condition monitoring describes activities ”performed either
manually or automatically, intended to measure at predetermined intervals the char-
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acteristics and parameters of the physical actual state of an item” [15, p.41]. Within
a condition monitoring system, fault diagnosis, which includes ”actions taken for fault
recognition, fault localization and identification of causes” [15, p.43], allows for cost-
effective repair measures and reduced risk of complete systeme failure.
An even more sophisticated version of condition-based maintenance is the predictive
maintenance strategy. This strategy aims to detect potential hidden faults and prevent
their progression by anticipating future changes in component conditions [15, p.35]. The
additional prognosis of the degradation and a Remaining Useful Life (RUL) estimation
enable precise planning of maintenance activities. This can in theory provide most
sustainable and cost-effective maintenance [17, pp.30-34].
Both types of condition-based maintenance are based on condition monitoring. Accord-
ingly, the effectiveness of these strategies is highly dependent on the reliability and
accuracy of condition monitoring and fault predictions. This includes fault diagnosis
and, for predictive maintenance, the additional prognosis of future degradation. Thus,
there is a need for mature monitoring systems. According to Zonta et al. [19], the
approaches for implementing fault predictions can be categorized in the following way:

• Physical model-based: Fault predictions rely on mathematical modeling of the
underlying physical mechanisms for fault development.

• Knowledge-based: This is sometimes referred to as a hybrid strategy combining
physics-based and data-driven modeling and includes approaches to reduce the
complexity of physical models.

• Data-driven: Models are based on statistics or ML algorithms to recognize patterns
of fault development based on existing data.

In recent research, data-driven approaches are very commonly implemented to enable
fault predictions. Therefore, further information on this topic is presented in section 2.4.

2.2. Condition Monitoring of Rolling Bearings in
E-Machines

Rolling bearings are used in a wide variety of technical systems. For the present work,
the focus is placed on e-machine applications. For e-machines, the literature data on
the proportion of failures caused by bearings varies. For example, Bonnett and Yung
[9] state that bearing faults are responsible for at least 51 % of the total failures of
induction motors for the petroleum and chemical industries. Another comprehensive
study concludes a value of 41 % of the failures being related to bearings, however,
including several types of bearings such as sleeve and ball bearings [20]. Thus, the exact
proportion of rolling bearing failures depends on the application and the specific design
of the e-machine. Nevertheless, it is apparent that bearing faults have a significant
impact on the reliability of e-machines.
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In the course of implementing condition-based maintenance, it is necessary to moni-
tor the components that are critical to failure. Various methods are available for this
purpose, using different types of sensor data. Figure 2.2 shows some of the common mon-
itoring approaches and a qualitative ranking of corresponding preventing times before
breakdown of the component.

C
o
m

p
o
n

e
n

t 
co

n
d

it
io

n Condition 
starts to 

change

Vibration
(Detected by 

vibration analysis)

Excessive friction
(Particles that can be 

detected by oil analysis)

Noise
(Audible)

Heat
(Detected by touch or 

heat sensors)

Smoke
(Detected by smell or 

visual checking)

Break 
down

Preventing time using vibration analysis

Months Weeks Days Minutes

Figure 2.2.: Typical development of a mechanical failure; according to [21].

Furthermore, according to Nandi and Ahmed [3, pp.7-10], the condition of rotating
machinery is commonly monitored using the condition monitoring techniques listed be-
low:

• Vibration Monitoring

• Acoustic Emission

• Motor Current Monitoring

• Oil Analysis and Lubrication Monitoring

• Thermography

• Visual Inspection

• Performance Monitoring

• Trend Monitoring
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Depending on the machine and its application, a combination of multiple monitoring
techniques can be reasonable in order to reach desired prematurity and accuracy of the
monitoring system [22]. In the following, the first four of the techniques mentioned above
are discussed briefly due to their more common use.
Vibration analysis is the most widely used method for monitoring of rotating components.
Changes in the condition, which lead to altered force excitations and consequently to
altered vibrations of the systems’ mechanical structure, can be detected promptly after
the first changes occur [21]. Depending on the operating conditions of the machine and
the frequency range to be analyzed, different sensor types and measured variables can
be used. The magnitude of the vibration can be quantified in terms of displacements,
velocities or accelerations [23]. Most widely, piezoelectric accelerometers are used, which
follow the piezoelectric principle. These accelerometers typically can operate in a wide
frequency range of up to tens of kHz [3, p.27]. The forces acting on the sensor due
to the vibrational movements of the surface cause displacements of electrical charges
within the piezoceramic. These charge displacements are measured in terms of voltage
signals. A more inexpensive alternative to piezoelectric sensors can be provided by
micro-electromechanical systems (MEMS), which are specifically designed to measure
acceleration. These MEMS accelerometers are mainly produced lithographically from
silicon and its compounds, and can be thought of as microscopically small mass-spring-
damper systems. Inside the sensor, narrow silicon patterns form capacitors. When an
acceleration is present, the deflection of the microscopical structure causes a change in
capacitance, which can be measured [24].
Faults which are characterized by amplitude changes in very high frequency ranges
are difficult to detect using vibration analysis. This is where the analysis of Acoustic
Emission (AE) offers advantages. The AE technique enables the detection of elastic
stress waves inside the material that originate from strain energy which is released during
material deformation or crack initiation [25]. By analysing frequencies in the range of
around 100 kHz up to 1 MHz, initial events of fault formation can be recognized [26].
As an additional technique for condition monitoring of e-machines and their components,
current monitoring is a common choice. Main advantage of this technique is that no
additional sensors have to be added to the machine. Instead, readily available measure-
ment quantities in terms of motor current or voltage signals can be utilized [27]. This
enables economic benefits in comparison to other monitoring techniques [3, p.8].
Another method of condition monitoring is to analyze the lubricating oil. Oil lubrication
is generally designed to be a closed system. Within this system, metal particles that
detach from the components are removed from the oil using filters. The number, size
and type of particles can be analyzed to draw conclusions about the condition of the
components from which the particles originate. Furthermore, parameters such as oil
viscosity can be measured in order to determine the lubricant’s condition. Oil monitoring
can be implemented in a continious way using online systems. However, it is mostly
executed offline by regularly taking samples [28]. As rolling bearings inside e-machines
are usually lubricated by grease, the oil-based analysis is not feasible there.
In addition to the established techniques described above, within recent research, an ad-
ditional fault diagnosis technique has been developed which utilizes the measurement of
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the bearings’ electric impedance [29]. This impedance-based fault diagnosis is expected
to provide particularly early preventing times. However, its predictive performance is
still to be evaluated in comparison to the more established techniques like vibration
monitoring [30].

2.3. Bearing Fault Diagnosis using Vibration Data
From the different techniques for condition monitoring of rolling bearings, presented in
the previous section 2.2, the further course of this work focuses on vibration-based fault
diagnosis. To introduce the fundamental state of research on this topic, next, a general
overview of rolling bearing failure modes is provided in section 2.3.1. Furthermore, the
bearing kinematics and fundamental frequencies are presented and visualized in section
2.3.2. Additionally, section 2.3.3 gives an overview on publicly available, scientific data
sets which are commonly used for research on bearing fault diagnosis.

2.3.1. Failure Modes of Rolling Bearings
According to DIN EN 13306, a failure mode describes the ”manner in which the inabil-
ity of an item to perform a required function occurs” [15, p.26]. In accordance with
ISO 15243, table 2.1 provides an overview of different failure modes occuring in rolling
bearings.

Table 2.1.: Overview on rolling bearing failure modes; according to [31, p.3].

Main group Sub-group

Rolling contact fatigue Subsurface initiated fatigue
Surface initiated fatigue

Wear Abrasive wear
Adhesive wear

Corrosion Moisture corrosion
Frictional corrosion

Electrical erosion Excessive current erosion
Current leakage erosion

Plastic deformation Overload deformation
Indentations from particles

Cracking and fracture
Forced fracture
Fatigue fracture

Thermal cracking

Starting at the top of table 2.1, rolling contact fatigue is a phenomenon caused by cyclic
load of the material [32]. For rolling bearings, these repeated stresses are caused by the
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rolling elements passing the raceways. On the one hand, for subsurface initiated fatigue,
microcracks begin to develop below the surface. With continued cyclic load, these cracks
can propagate to the surface and cause spalling. On the other hand, surface initiated
fatigue can be caused by improper lubrication, leading to plastic deformation of the
surface asperities and the formation of microcracks [31, pp.3-5].
Wear can be subdivided into abrasive and adhesive wear. In general, it results in the
occurence of detached small particles and shape changes of the tribologically stressed
surface [33, pp.9-11]. While abrasive wear occurs when a hard surface or particle re-
moves material from a softer counterface, adhesive wear leads to transfer of material by
smearing, caused by high contact pressures and temperatures [31, pp.6-8].
Corrosion can be caused by moisture or aggressive media like water or acids and can
result in dark discolouration and spalling of material. Additionally, frictional corrosion
can occur under certain load conditions, leading to oxidation of the surfaces [31, pp.9-10].
Electrical currents passing through a contact can lead to electrical erosion. This failure
mode is particularly relevant for todays rolling bearing applications inside inverter-fed
e-machines. According to ISO 15243 [31, pp.12-14], electrical erosion can manifest itself
in the form of excessive current erosion or current leakage erosion. Accordingly, the
failure can occur in the range from microscopic craters up to dominant, macroscopic
fluting on the bearing components. Additionally, the passage of electrical currents can
cause lubricant degradation, and lead to the formation of so-called white etching cracks
within the material [34].
Plastic deformation takes place as soon as the material’s yield strength is exceeded. For
example, this can be caused by improper handling, leading to static overload of the
bearing. Furthermore, severe damages can occur in terms of cracks or fracture, if the
tensile strength of a material is exceeded [31, pp.14-19].
The failure modes mentioned above may initially be caused by design, manufacturing,
assembly, operation or maintenance. Within real applications, different failure modes
can appear simultaneously or build upon each other. The possible overlap of multiple
failure modes can make it difficult to differentiate between them and to analyze their
cause [35, pp.1043-1068].
Tribological contacts and the associated modes of possible failures are inherent in many
components such as bearings or gearboxes. However, measures can be implemented to
reduce the occurrence of failures. For example, reducing the surface pressure by design
or improving the kinematics can help to reduce material stress. Furthermore, changes to
the tribological system can contribute to the prevention of failures by selecting suitable
materials, surface finishes and lubricants [36, pp.206-208].

2.3.2. Bearing Kinematics and Fundamental Frequencies
The bearing kinematic yields fundamental rollover frequencies, which are of great impor-
tance for bearing fault diagnosis [37]. If a fault-based surface irregularity exists at one
of the raceways or at a rolling element, according to its location, vibrations are excited
at so-called fundamental frequencies. These frequencies describe the rate at which a
fault passes through the contact areas [13, p.47]. The exact values of the fundamental
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frequencies are depentend on the bearing’s geometry and its contact angle. Figure 2.3
visualizes the contact angle ϕ and the bearing’s pitch diameter dP as well as its ball
diameter dB.

Figure 2.3.: Cross-sectional view of a ball bearing; according to [38, p.169].

On the one hand, the fundamental frequencies depend on the geometrics, including
the number of balls (rolling elements) NB. On the other hand, they depend on the
inner ring rotational frequency fi and the outer ring rotational frequency fo. Assuming
pure rolling within the bearings contacts, the fundamental bearing frequencies can be
calculated according to the following formulas [38, pp.167-173]:

• Ball pass frequency, inner race (BPFI):

BPFI =

∣∣∣∣NB

2
(fi − fo)

(
1 +

dB cosϕ
dP

)∣∣∣∣ (2.1)

• Ball pass frequency, outer race (BPFO):

BPFO =

∣∣∣∣NB

2
(fi − fo)

(
1− dB cosϕ

dP

)∣∣∣∣ (2.2)

• Fundamental train (cage) frequency (FTF ):

FTF =
1

2

[
fi

(
1− dB cosϕ

dP

)
+ fo

(
1 +

dB cosϕ
dP

)]
(2.3)

• Ball (roller) spin frequency (BSF ):

BSF =

∣∣∣∣ dP

2dB
(fi − fo)

(
1− d2B cos2 ϕ

d2P

)∣∣∣∣ (2.4)
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For most use cases, especially in e-machines, the inner ring rotates and the outer ring is
fixed. For this case, equations (2.1) to (2.4) can be simplified by setting fo = 0.
Looking at the ball spin frequency BSF for fault diagnosis, the even harmonics are of
particular importance, since a ball fault may be in contact on the inner ring and the
outer ring for every rotation of the rolling element [39].
To understand vibration-based fault diagnosis, the difference between the fault-induced
force excitation and the resulting vibration response at the location of the vibration
sensor must be emphasized. For a single, fault-based surface irregularity, and assuming
idealized bearing kinematics, the force excitation happens at the rate of the fundamental
frequencies outlined in equations (2.1) to (2.4). However, the vibration response results
as a combination of the fundamental excitation frequencies and system-dependent, high-
frequency resonances. More precisely, the observed vibration corresponds to a modu-
lation of the system’s structural resonances with the respective fundamental excitation
frequency [13, pp.47-49].
To demodulate this signal in order to extract the fundamental excitation frequencies,
a technique called envelope analysis is commonly used, for example, by applying the
Hilbert Transform (HT) [39]. Further information on the mathematical foundations
of the HT is presented in section 4.3.4. To visualize the vibration behavior of differ-
ent faults, figure 2.4 shows some idealized vibration patterns and their corresponding
envelope signals for single outer race, inner race and rolling element faults. By identi-
fying characteristic vibration patterns and their fundamental frequencies in a vibration
measurement, a bearing fault can be diagnosed.
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Figure 2.4.: Idealized vibration patterns and corresponding envelope signals of bearing
faults; according to [39, p.487].

In addition to the vibration pattern, the amplitude of the vibration can provide infor-
mation regarding the extend of the bearing fault. To quantify the overall level of a
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vibration, a commonly used quantity is the signal’s Root Mean Square (RMS) value,
since it can provide information about the overall vibrational strength [40]. For infor-
mation on the mathematical equation to calculate the RMS of a discrete signal, please
refer to table 4.2.

2.3.3. Scientific Data Sets
Within past research, data sets were collected at various institutions to develop and
verify methods for fault diagnosis of rolling bearings. A majority of these data sets are
focused on vibration data. On the one hand, some data sets make use of run-to-failure
experiments, in which bearings are operated in endurance tests up to a certain level of
damage. On the other hand, several data sets are based on distinct healthy and faulty
bearing conditions, prepared prior to the data acquisition test runs. Some institutions
provide their acquired data sets to be freely accessible. To provide an overview on these
publically available data sets, a selection of them is listed in table 2.2. Systematic reviews
on past scientific publications on bearing condition monitoring and fault diagnosis can
be found in publications by Schwendemann et al. [41] and Hakim et al. [42]. Both of
them summarize a variety of different investigations and the particular data sets used.

Table 2.2.: Overview on widely used, publicly accessible data sets in the context of vibration-
based condition monitoring of rolling bearings.

Name Type of
experiments

Number of
bearings

Rotational
speed in rpm

Sampling
rate in kHz

IMS [43] Run-to-failure 3 2000 20

PRONOSTIA [44] Run-to-failure 17 1300 to 1800 25.6

XJTU-SY [45] Run-to-failure 15 2100 to 2400 25.6

CWRU [46] Healthy and
faulty conditions 10 1720 to 1797 12 or 48

MFPT [47] Healthy and
faulty conditions 3 1500 48.8 or 97.6

PU [48] Healthy and
faulty conditions 32 900 or 1500 64

The data sets listed in table 2.2 are now briefly explained. Starting at the top of the
table, the IMS (Center for Intelligent Maintenance Systems) data set is also referred to as
NASA data set and provides run-to-failure data with experiments running for more than
100 million inner ring revolutions [49]. Similarly, the PRONOSTIA data set, also known
as FEMTO data set, provides data from several, accelerated run-to-failure experiments
at three different, constant operating conditions [44]. Additionally, the XJTU-SY data

14



2. State of Research

set comprises 5 run-to-failure test runs each for 3 different operating conditions. A
primary objective of these three run-to-failure data sets is to enable research on RUL
estimation [45].
An extensive data set, frequently used for research on bearing fault diagnosis, is pro-
vided by the CWRU (Case Western Reserve University). It comprises data of healthy
and faulty bearings at various operating conditions. Therefore, different sizes of seeded
faults are given each for inner race, outer race and ball faults [50, 51]. In addition to
the CWRU data, both MFPT (Society for Machinery Failure Prevention Technology)
and PU (Paderborn University) provide data of healthy and faulty bearing conditions to
enable research on fault diagnosis for condition-based maintenance. Therefore, different
inner race, outer race, ball and cage faults are used for experimental data acquisition.
In particular, the PU data set contains both artificially damaged bearings and bear-
ings damaged using accelerated life tests to produce realistic faults [48]. Later on in
the present thesis, a newly collected data set is presented. The characteristics of the
measurements for this new data set can be oriented to the publicly available data sets
presented above.

2.4. Data-Driven Approaches
Data-driven approaches have gained significant importance in industrial applications,
particularly with the emergence of Big Data. By utilizing advanced ML methods, mean-
ingful patterns and trends can be extracted from the data. ML is a subset of AI that
enables computers to learn and make predictions or decisions without being explicitly
programmed for the specific task. ML methods can interpret large amounts of data by
utilizing mathematical algorithms and statistical models. There are various ML algo-
rithms, which can be assigned to the following categories [52, pp.19-23]:

• Supervised learning focuses on the utilization of labeled training data, where the
algorithm learns to map input data to the desired output.

• Unsupervised learning involves training the algorithm on unlabeled data, allowing
it to discover hidden patterns or structures within the data.

• Semi-supervised learning falls between supervised and unsupervised learning, using
some limited amount of labeled data to identify patterns and associate them with
additional unlabeled data.

• Reinforcement learning is based on the algorithm learning through trial and error,
receiving feedback in the form of rewards or penalties to optimize its decision-
making process.

For the further course of this work, only supervised learning is considered in more detail.
Therefore, figure 2.5 presents a typical workflow when implementing a supervised learn-
ing model.
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Figure 2.5.: Supervised learning workflow; according to [53].

For supervised learning, labeled data is used to train an ML model. Here, the model
is intended to learn the relationships between given input and output values. The
input values are referred to as features and the output value is called label. Given a
feature space X and a label space Y , the objektive of the ML algorithm is to learn a
mathematical model in terms of an estimation function f̂ : X → Y . Given a data sample
S = (x, y) ∈ (X ×Y), this model shall be able to predict the label y corresponding to the
given feature vector x. To evaluate the models performance with respect to its prediction
of labels, testing data is used. If the model performs satisfactorily, it can be deployed
for use with operating data. From the use in production, further data and additional
information can be acquired in order to tune the model.
In supervised learning, a distinction can be made between the following two tasks:

• Classification for discrete labels.

• Regression for continuous labels.

It is important to notice that only the label’s type is relevant for deciding whether the
current task is a classification (discrete) or a regression (continuous). The features can
be discrete, continuous or mixed in both cases [54, p.11].
ML methods require high-quality data and careful model selection to enable reliable
predictions. Calculating suitable features and additionally transforming them by using
techniques such as the standardization of their distributions can have a significant impact
on the prediction quality [55].
For model evaluation, a great variety of different metrics exists. For the reason of
compactness, only the so-called accuracy is presented in detail below, as it is a commonly
used metric for classification tasks. The accuracy is easy to interpret and particularly
suitable for the use with balanced data. Here, the term balanced means that each class
is represented with an equal number of data samples. As stated in equation (2.5), the
accuracy is defined as the fraction of correct classifications among all classifications made
[54, p.147].

Accuracy =
correct classifications

all classifications (2.5)
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Since the accuracy is not well suited for the evaluation of imbalanced data, a notable
alternative metric for classification is the so-called F-score. In contrast to the accuracy,
the F-score can account for differing proportions of individual classes within the data.
For comprehensive information on different metrics and their use cases, the reader is
referred to available literature on ML, such as the book provided by Kubat [56].

2.5. Transferability of Data-Driven Models
As already introduced in section 1.2, the present work is driven by the idea to create a
bearing fault diagnosis model which can be transferred to a differing technical system.
Thus, labeled training data from a first system (source) shall be used to train a data-
driven model, which then is meant to enable accurate fault predictions when testing it
on a second system (target). Using ML terminology, these two systems are referred to
as domains.
With supervised learning, data-driven models are usually trained on labeled data from
one domain, and tested on data from the same domain. However, when trying to transfer
a data-driven model to a different domain, this scenario is referred to as domain adaption,
which represents a subcategory of transfer learning. Figure 2.6 schematically shows
the differences between traditional supervised learning and domain adaption. Here,
for traditional supervised learning, training and testing data are taken from the same
domain DA. In contrast, with domain adaptation, the training data comes from a source
domain Ds and the testing data is taken from a target domain Dt [57, pp.534-539].

Training 

data

Map MapTesting 

data

Testing 

data

Training 

data

Traditional supervised learning Domain adaption

Figure 2.6.: Schematic comparison of traditional supervised learning and domain adaption;
according to [58].

The main hurdle to cross with domain adaption is to align the feature distributions
in both source and target domains. This is also referred to as domain discrepancy
reduction. Let D = (X,Y ) = {xi, yi}ND

i=1 be a labeled data set, consisting of ND data
samples and containing the feature set X as well as the corresponding label set Y . Now,
P (X) represents the marginal distributions of the feature set X. Due to Ds being
different to Dt, the feature sets of both domains have different marginal distributions
P (Xs) ̸= P (X t). To implement domain adaption, a common approach is to search
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for a mapping function F̂ (·) which enables the mapped, marginal feature distributions
P (F̂ (X)) in both domains to match, so that P (F̂ (Xs)) = P (F̂ (X t)). However, using
data-driven domain discrepancy reduction techniques to create this mapping function
requires both labeled samples from Ds and additional unlabeled samples from Dt, with
both of the feature sets Xs and X t ideally containing samples for the complete label
space Ys = Y t [58, 59].
Thus, for bearing fault diagnosis, the main benefit of the data-driven domain discrepancy
reduction techniques is that the samples from the target domain do not necessarily have
to be labeled. However, samples should be collected for all bearing faults which are to
be detected. Due to this reason, the effort required for data acquisition on the target
domain can only be reduced to a limited extent with current, data-driven methods for
domain adaptation [27].
To overcome this shortcoming of data-driven domain adaption, a fundamental idea of
the present work is to find a domain knowledge-based mapping function F̂dk(·) to satisfy
P (F̂dk(X

s)) = P (F̂dk(X
t)). In contrast to domain adaption techniques from already

available literature, the generation of this mapping function shall not depend on a com-
prehensive feature set from the target domain Dt. Instead, a transferable model shall
be generated using only a labeled data set from the source domain Ds and additionally
incorporated domain knowledge. This is intended to provide advantages in terms of time
and cost savings when a fault diagnosis model is to be deployed for a new target system.
Now, having outlined the current state of research, the research design is derived in the
next chapter 3.
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3. Research Design
The state of research shows that transferability of data-driven models for rolling bearing
fault diagnosis is crucial and still a major challenge. Thereby motivated, this chap-
ter specifies the research objectives first. Subsequently, the research hypotheses and
Research Questions are derived. Lastly, the further outline of this thesis is presented.

3.1. Research Gap
For the creation of transferable data-driven fault diagnosis models, the main challenge is
to avoid changes in the feature distributions inbetween source and target domains [60],
see section 2.5. With traditional supervised learning, changes in the feature distributions,
which are not correlated to changes of the fault labels, can lead to incorrect predictions.
When using vibration measurement data for fault diagnosis, there are some influences
which cause exactly such changes of the feature distributions by affecting the measured
vibration signals, although the bearing fault remains unchanged. The three main influ-
encing factors on vibration measurement signals for rolling bearing fault diagnosis are
presented in figure 3.1.

Structural dynamics Measurement chainOperating condition

Influencing factors on vibra�on data

Bearing fault

Fault diagnosis

Figure 3.1.: Influencing factors on vibration-based fault diagnosis.

These three main influencing factors are analyzed to different degrees in past literature.
Approaches have been made to incorporate some of the influencing factors into data-
driven model generation in order to improve the transferability of the resulting models.
However, some influences have not yet been taken into account. In the following, the
three influencing factors shown in figure 3.1 are elaborated briefly. Building upon this,
the research gap is specified.
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• Operating conditions: The properties of occurring vibrations depend on the oper-
ating condition of the machine. In general, higher system loads lead to greater
force excitation amplitudes inside the machine, generating higher levels of vibra-
tion. In an analogous manner, a shift in operating speed leads to a shift of the
force excitation frequency, also changing the properties of vibration [13, p.47]. Mo-
tivated by these influences on the vibration data, data-driven models were already
extended in previous research in order to consider the impact of varying operating
conditions on the fault predictions [58, 61].

• Structural dynamics: New mechanical systems or new versions of established sys-
tems typically differ from the existing ones in terms of their mechanical designs.
These changes in mechanical design are accompanied by changes in structural dy-
namics. Within existing research, the influence of changes in structural dynamics
on the vibration-based fault diagnosis has not yet been investigated in isolation.
However, the literature indicates that even small changes to a machines structure
can have a significant effect on the propagation of structure-borne sound [62].

• Measurement chain: The data acquisition system may vary from one machine
to another, leading to different signal properties. This influence can potentially
be controlled during product development by selecting data acquisition systems
with specific measurement characteristics and adjusted filter settings. Additionally,
known measurement characteristics can be used to calibrate the measured data
within digital signal processing [63].

As presented above, the influences caused by varying operating conditions or differing
measurement chains seem to be manageable according to the state of research. How-
ever, there is a research gap regarding the investigation of the influence of differing
structural dynamic properties on vibration-based fault diagnosis. In order to create
transferable fault diagnosis models, there is a need for novel modeling approaches that
can take changes in structural dynamics into account. With this research gap in mind,
the Research Questions are derived within the following section.

3.2. Research Questions
The first research objective aims to evaluate the influence of differing structural dynamic
properties on the predictive accuracy of data-driven, vibration-based fault diagnosis
models. Therefore, the following research hypothesis is stated:

Hypothesis: Transferring a data-driven fault diagnosis model for rolling bearings,
which is based on vibration measurement data, to a system with differing structural
dynamic properties, leads to a reduction of its predictive accuracy.

The first Research Question aims to test this hypothesis in a quantifying manner by
evaluating the predictive accuracy, as defined in equation (2.5):
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Research Question 1: To what extent does the transfer of a data-driven, vibration-
based fault diagnosis model for rolling bearings to a system with differing struc-
tural dynamic properties reduce its predictive accuracy?

The follow-up objective of this work is defined based on the outcome of the first Research
Question. Methods are to be developed that enable the generation of models with
enhanced transferability to systems with different structural dynamic properties. As
introduced in section 2.5, a data-driven solution of this problem would require additional
data to be collected on the target system [57]. To avoid this necessity of additional,
extensive data acquisition, this thesis focuses on the development of extended models
by incorporating domain knowledge of structural dynamics. Therefore, the following
hypothesis is proposed:

Hypothesis: Taking domain knowledge into account, extended vibration-based fault
diagnosis models can be developed which enable enhanced transferability to systems
with differing structural dynamic properties.

Two Research Questions derive from this hypothesis. First, methodological concepts
shall be developed for generating extended models that strive to achieve the claims
described in the latter hypothesis:

Research Question 2: In which way can domain knowledge on structural dynam-
ics conceptually be utilized to extend vibration-based approaches for bearing
fault diagnosis in order to allow for enhanced model transferability to systems
with differing structural dynamic properties?

Based on the developed concepts, the evaluation of the extended models follows with
regard to their transferability. This evaluation is to be carried out quantifiably within
the framework of experimental investigations:

Research Question 3: To what extent do enhanced models, which are created
according to the extended approaches from Research Question 2, improve trans-
ferability to systems with differing structural dynamic properties in terms of
their predictive accuracy?

Summarizing the Research Questions, the present thesis first aims to assess the trans-
ferability of vibration-based bearing fault diagnosis to systems with differing structural
dynamic properties. Secondly, new approaches are to be derived to enhance transferabil-
ity by extending these fault diagnosis models using domain knowledge. Thirdly, models
are generated using the newly presented approaches and evaluated with respect to the
original, state-of-research approaches.
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3.3. Thesis Outline
The subsequent chapters of this thesis are structured based on the previously posed
Research Questions as underlying guidelines:

• Chapter 4 provides the fundamental methods required for the further course of
this work, focusing on the topics of ML, feature generation, signal processing, and
structure-borne sound.

• Chapter 5 presents the acquisition of an experimental data set, which is used in
the later chapters to answer Research Questions 1 and 3. For this purpose, the
experimental design is derived first. Furthermore, the test bench, the preparation
of bearing faults, and the procedures required for carrying out the experiments are
described.

• Chapter 6 addresses the response to Research Question 1. To assess the acquired
data for plausibility, an explorative data analysis is carried out first. Subsequently,
various feature engineering methods are investigated and multiple ML algorithms
are tuned in terms of hyperparameter optimizations to examine the predictive
accuracies of several data-driven models. Initially, the predictive performance of
the models is determined on a fixed system without transfer for reference purposes.
This is followed by evaluating the transferability of the models using a transfer
scenario with differing structural dynamic properties.

• Chapter 7 introduces two novel approaches for generating extended fault diagnosis
models. With regard to Research Question 2, both approaches are designed to
improve transferability with respect to changes in structural dynamic properties
by incorporating domain knowledge.

• Chapter 8 evaluates the approaches developed within the scope of chapter 7 in
order to answer Research Question 3. The predictive accuracies are compared to
the original vibration-based baseline from chapter 6.

• Chapter 9 discusses the previously determined results with regard to the research
questions raised. In addition, the feasibility of the newly proposed approaches is
discussed.

• Chapter 10 concludes the contributions of this thesis to the state of research and
identifies pending topics for future work.
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4. Fundamental Methods
Based on the research questions raised in the previous chapter 3, this chapter now intro-
duces methods which are fundamental for the further course of this work. First, section
4.1 provides a brief overview on the field of ML, focusing specifically on algorithms for
classification and the topic of hyperparameter optimization. Furthermore, fundamentals
of vibration-based feature generation for ML-based fault diagnosis are presented. On
the one hand, extensive lists of statistical features in the time- and frequency-domain
are presented in section 4.2. On the other hand, section 4.3 introduces a selection of
signal processing methods. Lastly, section 4.4 provides an introduction to the topic of
structure-borne sound and its propagation, which is fundamental for a profound under-
standing of vibration-based fault diagnosis.
The fundamentals presented in the subsequent sections are not intended to cover the
entirety of the respective topics, but merely aim to introduce the methods used in
the further course of this work. For more comprehensive information on the methods
presented here and for further available alternatives, taking a look at the referenced
literature is highly recommended.

4.1. Machine Learning Methods
As already introduced in section 2.4, the goal of supervised learning is to approximate
an unknown function, which maps a sample of input features to a given label. The
further course of this work approaches the task of distinguishing distinct bearing faults.
Accordingly, the labels under consideration are of discrete nature. Due to this reason, the
introduction of ML algorithms within this section is focused on classification algorithms
solely. Subsequent to introducing a selection of classifiers in section 4.1, the topic of
hyperparameter optimization is addressed in section 4.1.2.

4.1.1. Algorithms for Classification
For Classification, a wide variety of ML algorithms exists. To provide a brief overview
on commonly used classifiers, table 4.1 is considered. Here, the algorithms are assessed
with respect to their classification time, training time, and generalization capabilities.
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Table 4.1.: Qualitative assessment of ML classifiers; according to [54, p.136].
Algorithm Classification time Training time Generalization

k-Nearest Neighbors slow very fast good for high k

Decision Tree very fast fast very bad

Random Forest fast very slow very good

Discriminant Analysis fast slow good

Artificial Neural Network fast slow good

Support Vector Machine very fast very slow very good

On the one hand, the training time refers to the computational effort necessary to train
an algorithm on given, labeled data. On the other hand, the classification time refers
to the effort associated with the decision making of an already trained algorithm. For
a large proportion of industrial applications, a high amount of computation for training
can be afforded, as this only happens initially during the development of an ML-based
function. In contrast, the computational effort of an algorithm for the classification on
production data is crucial, as it determines the necessary amount of long-term computing
resources.
Generalization refers to the ability of an algorithm to correctly apply the learned func-
tional relationship to previously unknown testing data. An important aspect to be
mentioned in this context is the so-called overfitting of ML models. Overfitting can be
understood as the algorithm’s raw memorization of the training data. If the testing data
slightly differs from this training data, an overfitted algorithm delivers a significantly
decreased performance on the testing data. Generalization refers to the avoidance of over-
fitting. A well generalizing algorithm therefore produces predictions of approximately
equal accuracy for both training and testing data [54, pp.151-154].
The generalization capability of the ML algorithms is of utmost importance for model
transferability within a domain adaption scenario. For this reason, the Decision Tree
algorithm is discarded due to its bad generalization. Furthermore, the Discriminant
Analysis is not considered in further detail, as the Support Vector Machine represents a
considerable extension of the Discriminant Analysis [54, p.133].
In accordance with the above mentioned considerations, the four remaining classifica-
tion algorithms from table 4.1 are elaborated in more detail below. All of these four
algorithms allow for good or very good generalization and are capable of approximat-
ing non-linear functional relationships. With respect to the explanations below, please
keep in mind that not every algorithmic detail is explained here. For full mathematical
details, please refer to the cited literature on ML and pattern recognition, such as the
textbook written by Bishop [64].
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k-Nearest Neighbors (k-NN) is an algorithm which uses the similarity between data
points to classify new, unlabeled data. Since no real learning is involved despite storing
the training data, this type of algorithm is sometimes referred to as ”lazy algorithm”
[52, p.72]. Figure 4.1 schematically shows how a new testing feature sample, visually
represented by the question mark, is assigned to one of two classes by identifying the
labels of the nearby training data points. In this example, a two-dimensional feature
space is used, represented by the features x1 and x2.

0
0
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6

?
1
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3

Figure 4.1.: Schematic visualization of the k-NN algorithm with k = 3.

The number of neighbors, denoted by k, is a hyperparameter of the k-NN algorithm which
can be tuned to configure its performance. The choice of a high k-value avoids overfitting
and increases the algorithms generalization capabilities. Given the example visualized
in figure 4.1, k = 1 would lead the new point to be classified as a circle. In contrast,
k = 3 causes the allocation to the triangle-class due to its majority of the considered
nearest neighbors. As visualized, the distance between the data points is decisive for the
k-NN classification. Accordingly, the classification result is dependent on the distance
measure chosen. A commonly used distance measure is given by the Eucledian distance.
In addition to the type of distance measure, feature scaling can have a significant impact
on the classification performance. In general, scaling in terms of feature standardization
or normalization is recommended to use with the k-NN algorithm. Overall, the k-NN
is a very simple classifier with disadvantages in terms of its computational efficiency.
However, due to its simplicity, it is well suited as a benchmark in comparison to more
complex algorithms [54, pp. 101-103].

Random Forests (RFs) utilize the combination of several Decision Tree (DT) estima-
tors. By combining the predictions of a group of individual ML models, the performance
of the overall model can be increased. This approach is called ensemble learning and
can be applied to different types of base-learners. Figure 4.2 visualizes the fundamental
principle of a RF classifer, which works by predicting the label ypred according to the
majority voting of individual DT base-learners. To create an individual DT within the
RF, a partition of the original data is used. By making use of the so-called bootstrap-
ping, only some of the features and samples are given to a single DT for training. Based
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on this partition of the data, a single DT can be trained by utilizing a chain of simple
Boolean decisions [65, p.189].

…

Aggregating by majority vote

Decision Tree

Bootstrapping

Figure 4.2.: Schematic visualization of DTs voting as part of a RF classifier.

Despite its rather low complexity, the RF is a powerful ML algorithm which provides
very good generalization. The performance of the RF can be tuned by several hyper-
parameters, such as the number of individual DT classifiers, the partition of randomly
selected features and the partition of samples used for training of the single DTs. Fur-
ther hyperparameters can influence the generation of the single DTs, for example by
limiting the number of decisions allowed per DT [54, p.107-111].

Artificial Neural Networks (ANNs) are inspired by biological functions found inside
the brain or nerve system. An elementary part of the ANN is called a neuron, which
can handle multiple inputs to generate an output [52, p.105]. From a mathematical
point of view, each artificial neuron makes use of parametrizable weights, an activation
function and a bias term. By combining multiple neurons into an ANN, this architecture
can be used to approximate functional relationships. Several subtypes of ANNs have
been developed in the past decades. Within the present work, only a comparatively
simple type of ANN shall be introduced in detail, which is called a feed-forward neural
network. It is schematically depicted in figure 4.3 and consists of at least one input and
one output layer. Here, each circle visualizes an artificial neuron. To model non-linear
functions, at least one hidden layer of neurons has to be incorporated within the ANN
[64, pp.225-231].
The number of hidden layers and neurons inside each hidden layer are important hyper-
parameters to tune when setting up an ANN to be a function approximator. Optimal
configurations vary depending on the task’s complexity as well as the available amount
and quality of training data. If a large number of hidden layers is used, the network is
commonly referred to as a Deep Neural Network or simply called Deep Learning (DL).
Accordingly, DL can be considered a subgroup of ANNs [54, pp.5-7].
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Hidden layer 1Input layer Hidden layer 2 Output layer

Figure 4.3.: Schematic visualization of a feed-forward ANN with two inputs and one output,
using two hidden layers with three and four neurons.

Support Vector Machines (SVMs) make use of so-called hyperplanes to separate
the data samples of different classes. A hyperplane is a decision boundary that linearly
divides the feature space into two regions. The SVM aims to find the optimal hyperplane,
which means to maximize the margin of separation between the hyperplane and the
nearest data samples [52, p.58]. Figure 4.4 illustrates this for a two-dimensional feature
space in which the hyperplane is given by a dividing straight line.
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Figure 4.4.: Schematic visualization of a linear SVM separating two classes.

Maximizing the margin between the decision boundary and the data samples usually
leads to a very good generalization, which gives the SVM an advantage compared to other
classifiers [54, p.134]. In its original form, the SVM is limited to the linear separation
of two classes. However, multiclass tasks can also be solved by for example applying
the so-called one-versus-the-rest approach in order to use several single hyperplanes in
combination [64, p.338]. Additionally, extended versions can also be used to solve non-
linear relationships by utilizing so-called kernel functions. The main idea behind the
kernel functions is to map the original feature space into a higher dimensional space,
where linear separation is possible. The linear separation in this higher dimensional
space then corresponds to a non-linear separation in the original feature space. The
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specific kernel function to use can be configured via the hyperparameters of the SVM
[52, pp.63-66].

4.1.2. Optimization of ML Hyperparameters
ML algorithms contain two categories of parameters. On the one hand, their model
parameters are the ones updated and optimized during the training process by fitting
the model to the data. On the other hand, the models have hyperparameters which can
be used to configure their architectures. This changes the overall behavior of the ML
algorithms. In contrast to the model parameters, the hyperparameters are not updated
during training process. Instead, they can be tuned to ensure the algorithms optimal
performance for the given task and must be set before the final training of the model
takes place. Since manual tuning of hyperparameters can be inefficient and lead to
suboptimal results, several techniques for automated hyperparameter optimization have
been developed. Some examples for these techniques are grid search, random search,
evolutionary algorithms or Bayesian optimization [66].
Mathematically, the hyperparameter optimization can be described as follows: Consider
given data, comprising a feature set X and a corresponding label set Y . Using this
labeled data, an ML model is trained to learn an estimation f̂(X, θ) of the functional re-
lationship between X and Y . Here, θ = (θ1, ..., θj) is the j-dimensional hyperparameter
configuration from the hyperparameter space Θ = Θ1 × ... × Θj. To assess the perfor-
mance of the model, a loss function L(Y, f̂(X, θ)) is evaluated. During hyperparameter
optimization, this loss is to be minimized with respect to θ in order to get the optimal
hyperparameter configuration θ⋆ [67].

θ⋆ = arg min
θ∈Θ

L(Y, f̂(X, θ)) (4.1)

For the present work, Bayesian Optimization (BO) is utilized for hyperparameter opti-
mization due to its computational efficiency. BO-based methods use previous results to
determine the next set of hyperparameters by making use of a surrogate model. The
BO procedure can be summarized by the following steps [68]:

• Build a probabilistic surrogate model of the objective function.

• Search for optimal hyperparameter values using the surrogate model.

• Evaluate these hyperparameter values using the real objective function.

• Update the surrogate model using the new evaluation.

• Repeat from second step until termination criterion is reached.

There are multiple types of surrogate models which can be used inside the BO procedure,
including Gaussian Processes, Random Forests and Tree-structured Parzen Estimators.
For the present work, a Tree-structured Parzen Estimator (TPE) is used inside the BO-
based hyperparameter optimization. Main advantages of this BO-TPE optimization
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algorithm are its computational efficiency and its capability of handling categorical hy-
perparameters besides continuous and discrete ones. For full mathematical details on
the BO-TPE algorithm, please refer to Bergstra et al. [69].

4.2. Vibration-Based Feature Generation
Feature generation is a process used to derive a useful representation of the original
data that is designed to serve as input for the ML algorithm. The generated feature
representation is intended to contain the information required for ML-based decision-
making in a condensed form. As already stated in the previous chapters, the present
work focuses on fault diagnosis by utilizing vibration measurements. To generate features
from vibration data, acceleration signals can be processed by using mathematical feature
formulas. Feature calculation based on vibration data is commonly categorized into
two domains: On the one hand, features can be calculated based on the original time-
domain data. On the other hand, the frequency-domain data, usually calculated by
applying the Fast Fourier Transform (FFT), can be used for feature calculation. Lei et
al. [70, 71] propose a collection of 11 features in the time-domain and 14 features in the
frequency-domain. Taking into account the recommendations of Lei et al. and other
relevant literature, tables 4.2 and 4.3 provide a collection of frequently used features
for application on vibration signals from rotating machinery. This feature collection
is already presented within a previous publication of the present author [72]. In the
following, table 4.2 presents the formulas of the time-domain features Ti, which are
calculated based on the discrete time-domain signal s of length N .

Table 4.2.: Feature formulas in time-domain.

Feature Formula

Mean T1 =
1
N

∑N−1
n=0 s(n) [70]

Standard deviation T2 =
√

1
N−1

∑N−1
n=0 (s(n)− T1)

2 [70]

Square Root Mean (SRM) T3 =
(

1
N

∑N−1
n=0

√
|s(n)|

)2

[70]

Root Mean Square (RMS) T4 =
√

1
N

∑N−1
n=0 s

2(n) [70]

Maximum absolute T5 = max(|s|) [70]

Skewness T6 =
∑N−1

n=0 (s(n)−T1)3

(N−1)·T 3
2

[70]

Kurtosis T7 =
∑N−1

n=0 (s(n)−T1)4

(N−1)·T 4
2

[70]
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Crest factor T8 =
T5

T4
[70]

Clearance indicator T9 =
T5

T3
[70]

Shape indicator T10 =
T4

1
N

∑N−1
n=0 |s(n)| [70]

Impulse indicator T11 =
T5

1
N

∑N−1
n=0 |s(n)| [70]

Skewness factor T12 =
T6

T 3
4

[73]

Kurtosis factor T13 =
T7

T 4
4

[73]

Mean absolute T14 =
1
N

∑N−1
n=0 |s(n)| [74]

Variance T15 =
1
N

∑N−1
n=0 (s(n)− T1)

2 [74]

Peak T16 =
max(s)−min(s)

2
[74]

K factor T17 = T16 · T4 [74]

Energy T18 =
∑N−1

n=0 s
2(n) [75]

Mean absolute deviation T19 =
1
N

∑N−1
n=0 |s(n)− T1| [76]

Median T20 = median(s(n)) [76]

Median absolute deviation T21 = median(|s(n)− T20|) [76]

Rate of zero crossings T22 =
number of zero crossings

N
[76]

Product RMS kurtosis T23 = T4 · T7 [77]

Fifth moment T24 =
∑N−1

n=0 (s(n)−T1)5

T 5
2

[78]

Sixth moment T25 =
∑N−1

n=0 (s(n)−T1)6

T 6
2

[78]

RMS shape factor T26 =
T4

T14
[78]

SRM shape factor T27 =
T3

T14
[78]

Latitude factor T28 =
max(s)

T3
[78]
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Next, the frequency-domain features are to be introduced. For this purpose, the time-
domain signals are transferred into the frequency-domain, using the Fourier Transform
(FT). Since discrete signals are processed, a Discrete Fourier Transform (DFT) is used.
The specific implementation of the DFT typically uses the FFT algorithm, which en-
ables a particularly computationally efficient calculation of the frequency-domain signal.
To reduce so-called spectral leakage, windowing of the time-domain signal has to be
performed before applying the DFT calculation. This windowing process is designed to
reduce the transients of the discrete, finite signal at its boundaries. For the investiga-
tions carried out within this work, the very commonly used Hann window is applied for
this purpose [79, pp.187-198]. The discrete Hann window w is calculated according to

w(n) =
1

2

[
1− cos

(
2πn

N

)]
(4.2)

for n = 0, 1, 2, ..., N − 1.
To achieve correct amplitude scaling in frequency-domain, a amplitude correction factor
qw has to be introduced.

qw =
N∑N−1

n=0 w(n)
(4.3)

Now, the DFT-based, scaled, double-sided frequency-domain spectrum Sds can be cal-
culated according to

Sds(m) =
qw

N

N−1∑
n=0

s(n)w(n) · e−
j2πmn

N (4.4)

with j =
√
−1.

The double-sided spectrum can be converted into the single-sided spectrum S by discard-
ing the negative frequency components and multiplying the amplitudes of the positive
frequency components by two. As already mentioned previously, in practice, the FFT is
used instead of the original DFT calculation due to computational benefits. For mathe-
matical details on the FFT algorithm, please refer to standard texts on signal processing,
such as [80, pp.448-475].
Within the present work, frequency-domain signals are notated using the capital letters
of their time-domain representations. Given the discrete, one-sided frequency-domain
signal S, its length M and frequencies f , the frequency-domain features Fi can be
calculated according to the formulas presented in table 4.3.
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Table 4.3.: Feature formulas in frequency-domain.

Feature Formula

Mean F1 =
1
M

∑M−1
m=0 S(m) [70]

Variance F2 =
1

M−1

∑M−1
m=0 (S(m)− F1)

2 [70]

Third moment F3 =
∑M−1

m=0 (S(m)−F1)3

M ·(
√
F2)3

[70]

Fourth moment F4 =
∑M−1

m=0 (S(m)−F1)4

M ·F 2
2

[70]

Grand mean F5 =
∑M−1

m=0 f(m)·S(m)∑M−1
m=0 S(m)

[70]

Standard deviation 1 F6 =

√∑M−1
m=0 (f(m)−F5)2·S(m)

M
[70]

C Factor F7 =

√∑M−1
m=0 f2(m)·S(m)∑M−1

m=0 S(m)
[70]

D Factor F8 =

√∑M−1
m=0 f4(m)·S(m)∑M−1
m=0 f2(m)·S(m)

[70]

E Factor F9 =
∑M−1

m=0 f2(m)·S(m)√∑M−1
m=0 S(m)

∑M−1
m=0 f4(m)·S(m)

[70]

G Factor F10 =
F6

F5
[70]

Third moment 1 F11 =
∑M−1

m=0 (f(m)−F5)3·S(m)

M ·F 3
6

[70]

Fourth moment 1 F12 =
∑M−1

m=0 (f(m)−F5)4·S(m)

M ·F 4
6

[70]

H Factor F13 =
∑M−1

m=0

√
f(m)−F5·S(m)

M ·
√
F6

[70]

J Factor F14 =

√∑M−1
m=0 (f(m)−F5)2·S(m)∑M−1

m=0 S(m)
[71]

Thus, a total of 28 time-domain and 14 frequency-domain feature formulas are provided
for feature generation within this work.

4.3. Signal Processing Methods
The features presented in the previous section can be applied directly to the raw signal
and its frequency-domain representation. However, it is also common to use additional
signal processing methods and perform the feature calculation based on such processed
signals [71, pp.60-65]. A great variety of different techniques for signal processing exists
in literature. To limit the scope of this work, only a few important methods are to be
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presented here. These methods are selected with reference to a previous publication
by the present author [72] with respect to the predictive performances obtained there.
Therefore, firstly the frequency band separation is introduced as a processing method for
feature generation. Furthermore, the mathematical operation of convolution is explained
briefly. Subsequently, the Wavelet Transform and the Hilbert Transform are presented,
which are of importance for the further course of this work.

4.3.1. Frequency Band Separation
Within previous publications, the present author demonstrated the benefit of splitting
the frequency-domain data into separate frequency bands before applying the frequency-
domain feature formulas. This split is visualized in figure 4.5, showing equally sized
frequency band separation with an exemplary number of frequency bands NFB = 10.
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Figure 4.5.: Equally sized frequency band separation (yellow) of an amplitude spectrum
(blue) into ten frequency bands; according to [72].

The number of frequency bands NFB can be tuned to optimize the performance of an
ML-based model for fault diagnosis. In general, the Frequency Band (FB) processing
method was analyzed to be computationally efficient in comparison to other methods of
data processing. Originally, only the mean values were proposed for feature calculation
based on the separated frequency bands [81, 82]. Furthermore, the calculation of the
complete range of frequency-domain features, presented in table 4.3, was applied on the
separated frequency bands. As part of the most recent publication of the present author,
superior predictive performance of ML-based fault diagnosis models was obtained when
comparing the FB processing methods to other processing techniques using the CWRU
data set [72].
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4.3.2. Convolution
Convolution is a mathematical operation in which two signals are combined to form a
third signal. This operation is used in several sections of this work and shall therefore be
explained here. To emphasize the importance of convolution, Smith uses the following
words: ”Using the strategy of impulse decomposition, systems are described by a signal
called the impulse response. Convolution is important because it relates the three signals
of interest: the input signal, the output signal, and the impulse response.” [83, p.107].
Thus, convolution is a crucial operation when investigating the interrelationship between
excitation and response of a system’s structural dynamic.
The convolution of two signals s and u is denoted by s ∗ u and defined according to
equation (4.5). Here, the result of the convolution is designated as r.

r(t) = s(t) ∗ u(t) =
∫ ∞

−∞
s(τ)u(t− τ) dτ (4.5)

An important property of the convolution operation is its commutativity: s ∗ u = u ∗ s
[13, pp.74-75]. According to the convolution theorem, the proof of which is presented in
appendix A, the time-domain convolution is mathematically equivalent to the frequency-
domain multiplication. Thus, with R, S, and U being the Fourier transformed frequency-
domain representations of the time-domain signals r, s and u, the following holds true.

R(f) = S(f) · U(f) (4.6)
Therefore, according to the convolution theorem, the operation of convolution in time-
domain can be implemented computationally efficient by means of the more simple
operation of multiplication in frequency-domain.
The convolution of signals by certain kernel functions can be used to process them in
a modifying manner. For example, a common smoothening approach is given by the
Gaussian filtering, which uses a Gaussian kernel function g for convolution [84, p.6].

g(t) =
1√
2πσ

e−
t2

2σ2 (4.7)

Here, the amount of smoothening is defined by the standard deviation σ of the Gaussian
kernel. The smoothed signal s̃ is defined as follows.

s̃(t) = s(t) ∗ g(t) (4.8)
In the further course of this thesis, Gaussian filtering is applied in chapter 7 to create
smoothed visualizations of frequency-domain spectra.

4.3.3. Wavelet Transform
The Wavelet Transform (WT) was originally introduced by Morlet, primarily for the
purpose of analyzing seismic measurement data [85]. In the past decades, numerous
variations of the WT have been proposed, leading to the discovery of many additional
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applications. One such variation is the Continuous Wavelet Transform (CWT), which
provides a time-frequency representation of a signal. It is expressed by the following
integral [84, p.242]:

W (b1, b2) =
1√
|b1|

∫ ∞

−∞
s(t)ψ∗

(
t− b2
b1

)
dt (4.9)

Here, ψ(t) is a so-called mother wavelet, which has a fixed shape, but can be shifted in
time by b2 and dilated by the factor b1, with ψ∗(t) denoting the complex conjugate of
ψ(t). A very commonly used mother wavelet for signal analysis is given by the complex
Morlet wavelet [84, p.246], which is defined as follows:

ψ(t) =
σ√
π
e−σ2t2ej2πf0t (4.10)

This Morlet wavelet represents a Gaussian-windowed sinusoid, with f0 parameterizing
its center frequency and σ specifying its width [13, pp.131-133].
In contrast to the Short-Time Fourier Transform (STFT), the resolution in time and
frequency of the CWT is not constant. The CWT provides a high time-resolution and
a low frequency-resolution for the high frequency range. Vice versa, the low frequency
range is presented in low time-resolution and high frequency-resolution [84, p.243]. For
the vibration-based analysis of technical systems, this property of the CWT can be
beneficial, since those systems in practice often times are subject to rapid changes in
high frequencies, while only slow changes are present in low frequencies [71, p.64]. For
this reason, the CWT is preferred over the commonly used STFT for the creation of
time-frequency domain visualizations in the data exploration section 6.1 of this work.

4.3.4. Hilbert Transform
For vibration monitoring of rolling bearings, envelope analysis is a widely used technique
to separate the fundamental excitation frequencies from the high-frequency vibrations
of a technical system [13, pp.49-50]. Figure 2.4 already presented idealized vibration
patterns and corresponding envelope signals. There, it was shown how envelope signals
can be utilized to localize rolling bearing faults. To generate the envelope signals, a
demodulation of the original signal has to be performed, which can be implemented by
applying the so-called Hilbert Transform (HT) [13, pp.95-103]. In general, the HT of a
signal is defined as follows, resulting in the Hilbert transformed signal sH [71, p.58].

sH(t) =

∫∞
−∞

s(t)
t−τ

dτ

π
= s(t) ∗ 1

πt
(4.11)

The HT can therefore be seen as a convolution of the original signal s with 1
πt

. Having
both the original signal s and its Hilbert transformed sH, the analytic signal z can be
calculated.

z(t) = s(t) + jsH(t) (4.12)
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Moreover, the so-called instantaneous amplitude za provides an envelope of the original
signal s. It is given by the amplitude of the complex-valued analytic signal.

za(t) = |z(t)| =
√
s2(t) + s2H(t) (4.13)

This HT-based instantaneous amplitude is used later in section 6.1 to generate the
envelopes of the measured acceleration signals for data exploration. Afterwards, the
envelope signals are used for feature generation in section 6.3.

4.4. Structure-Borne Sound
In the later chapters of this work, knowledge on structure-borne sound is required to
understand the root cause of the measured acceleration signals and to generate novel
data processing approaches for fault diagnosis. Introducing into this topic, the term
structure-borne sound refers to the ”field of physics, which encompasses generation,
transmission, propagation and radiation of wave motions in solid structures” [86, p.1].
As presented in figure 4.6, the generation of sound can generally be differentiated to be
either direct or indirect.

Direct sound generation Indirect sound generation

Force excitation Velocity excitation

Excitation source

Fluid dynamics

Air pressure 

oscillations

Dynamic forces

Force flow within 

the machine

Structure-borne 

sound

Machine part outside 

the force flow

Structure-borne 

sound

Surface of machine 

part

Surface of the 

machine

Airborne sound

Figure 4.6.: Direct and indirect generation of sound; according to [62, p.O34].
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Within the present work, the indirect, force excited sound generation is of interest with
a particular focus on structure-borne sound propagation from the dynamic forces to
the surface vibrations of the machine. The dynamic excitation forces that excite the
structure of a machine, usually originate from the machine’s operating forces which
are essential for the function of the machine [62]. Additionally, a fault of the machine
can cause changes of excitation forces. This latter effect is utilized in vibration-based
condition monitoring [3].
A particularly important aspect in the generation of machine vibrations is the trans-
mission path from a dynamic force excitation to the resulting vibration at a point on
the structure. The behavior of this transmission path can be quantified in terms of its
Frequency Response Function (FRF).

4.4.1. Frequency Response Functions
The FRF represents the relationship between excitation and response of a system. Thus,
it describes the systems transmission behavior between the point of excitation and re-
sponse. In the context of structural vibrations, the excitation is usually described by
its force. The response can be measured using either displacement, velocity, or acceler-
ation of the vibration [87, p.14]. Knowing the excitation and the FRF of a system, the
corresponding vibration response is calculated via convolution. For the given case, the
response is considered to be measured in terms of acceleration. Therefore, the so-called
accelerance h represents the frequency response funcion by mathematically describing
the transmission behavior inbetween an excitation force e and its acceleration response a.
According to equation (4.14), the acceleration response a can be calculated by convolving
the force excitation e and the accelerance h [87, p.361].

a(t) = h(t) ∗ e(t) =
∞∫

−∞

h(τ)e(t− τ) dτ (4.14)

Equation (4.14) can be transformed with the help of the convolution theorem, the proof
of which can be found in appendix A. Accordingly, the corresponding frequency-domain
representation of equation (4.14) is given by a pointwise multiplication as stated in
equation (4.15).

A(f) = H(f) · E(f) (4.15)
The accelerance of a transmission path can be determined experimentally by exciting the
structure with a known excitation force and measuring the responding acceleration. On
the one hand, the excitation can be provided by a sweeping sine signal, exciting only one
frequency simultaneously. On the other hand, a broad band excitation can be applied,
exciting the complete frequency spectrum of interest at once. Most important excitation
signals for broad band excitations are white noise and the dirac impulse, both of which
in theory provide constant power density to the entire frequency range [87, p.361].
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For real measurements, one option is to excite the structure with a sine sweep or white
noise excitation using a so-called shaker. Another option is to use an impulse hammer
to excite the structure with an approximated dirac impulse. For the present work, the
impulse hammer method is considered in more detail due to its versatile operability.

4.4.2. Impulse Hammer Method
To calculate the accelerance using an impulse hammer, the structure is excited by knock-
ing at the desired points of excitation. The impulse hammer is equipped with a force
sensor inside its tip to measure the applied force impulse. Additionally, an accelerome-
ter is applied at the desired response point of interest. As visualized in figure 4.7, the
acceleration behaves in response to the systems structural dynamics. Knowing both the
hammer-based force excitation eh and the corresponding acceleration ah, the accelerance
can be determined in frequency-domain by pointwise division of the acceleration Ah by
the force excitation Eh.

Structural 

dynamics

Acceleration 

𝑎h(𝑡)
Force excitation 

𝑒h(𝑡) Fourier 

analysis
Accelerance 

Figure 4.7.: Schematic of impulse hammer method; according to [87, p.362].

In contrast to the theory, where an idealized impulse excites the structure with constant
power density for all frequencys, in reality the frequency range is limited inverse propor-
tionally to the duration of the non-idealized impulse. Thus, a shorter impulse duration
leads to a larger frequency range. The impulse duration can be influenced by the tip
material of the hammer and its weight. Harder tip materials and lower hammer weights
lead to shorter impulse durations and thus to higher frequency ranges. However, this
combination also decreases the frequency-wise force magnitude and thus increases the
influence of noise in Fourier analysis.
Given the introduction of fundamental methods within the present chapter, the now
following chapter 5 focuses on the experimental data acquisition which is necessary to
address the defined Research Questions.
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5. Experimental Data Acquisition
With the aim of providing a suitable data set to tackle the Research Questions raised
in chapter 3, the present chapter focuses on the experimental data acquisition. Firstly,
the experimental design is elaborated in section 5.1. Furthermore, the test bench setup
and the preparation of bearing faults are introduced in sections 5.2 and 5.3. Finally, the
experimental procedure is presented in section 5.4.

5.1. Experimental Design
The main topic of Research Questions 1 and 3 is to evaluate the fault diagnosis accuracy
in a transfer scenario from a reference system (source domain) to a system with differ-
ing properties in structural dynamics (target domain). For information on the general
principle of transfering an ML model from a source domain to a target domain, please
refer to section 2.5. To enable the investigations on model transfer in the given fault
diagnosis case based on experimental data, the experimental requirements are specified
in section 5.1.1. Building upon this, section 5.1.2 introduces the experimental concept.

5.1.1. Determination of Experimental Requirements
To derive the experimental requirements, an overview of possible influencing factors on
vibration signals for fault diagnosis is required. It is important to emphasize that there
are a variety of influencing factors beside the actual bearing fault having impact on
the vibration measurement signals. Thus, the complete effect chain of influences on the
measurement data has to be taken into account for the determination of requirements.
Figure 5.1 extends the considerations already presented in figure 3.1 by visualizing the
chain of potential influencing factors when transferring a trained, vibration-based, data-
driven fault diagnosis model to a different system in general.
Starting at the top of figure 5.1, fault development is mainly influenced by the bearing
design itself and the operating condition it is working in. Given a bearing fault, the
dynamic force excitation depends on several influences. On the one hand, it is influenced
by the bearing fault itself. If a bearing fault arises or propagates, this leads to changes
within the dynamic force excitation at the bearing raceway. Rolling contact fatigue
for example can cause spalling and thus surface irregularities at the raceway, leading
to dynamic force excitations when a rolling element passes. Here, the amount of force
excitation is dependent on the fault severity. On the other hand, both bearing design
and operating conditions influence the force excitation. The bearing design for example
has the bearing fundamental frequencies as its dependent properties via the number of
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rolling elements, which affect the force excitation frequency. Additionally, changes in the
operating condition like varying bearing forces or rotational speeds affect the excitation
amplitude and its frequency.

Bearing fault

• Failure mode

• Fault location

• Fault severity

Fault diagnosis model

• Definition of faults

Bearing design

• Bearing type

• Bearing size

• Lubricant

Measurement chain

• Sensor behavior

• Hardware limitations

• Measurement settings

Operating condition

• Bearing forces

• Rotational speed 

• Temperature

Structural dynamics

• Machine geometry

• Materials

• Joints

• Sensor position

Structural vibration

Dynamic force excitation

Fault diagnosis

Fault development

Digital vibration signal

Figure 5.1.: Effect chain of influencing factors on vibration-based fault diagnosis.

Assuming a given force excitation, the structural dynamics of the system and espe-
cially the properties of vibration transmission inbetween the bearing and the vibration-
measuring sensor modify the vibration behavior at the sensor location.
This vibration is measured using a measurement chain to receive a digital signal. Since
different measurement equipment may have different characteristics and limitations re-
garding its hardware as well as its software, the digital signal can differ inbetween
different measurement chains.
After passing all these influencing factors, the digital vibration signal can be used for fault
diagnosis. It becomes clear that the bearing fault itself is not the only influencing factor
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on the vibration signal. Instead, additionally the bearing design, its operating conditions,
the structural dynamics and measurement chain may change from one system to another.
As already derived in section 3.1, the present work aims to bridge the research gap
regarding differing structural dynamics. Therefore, the influence of differing structural
dynamic properties shall be investigated and reduced using an isolated approach. Thus,
on the one hand, the structural transmission paths must be differable within the data
acquisition. Additionally, the bearing faults need to be variable in order to build a
data-driven fault diagnosis model. On the other hand, all influencing factors except
the structural dynamics must be kept constant to avoid them interfering within the
investigations. Given this context, the following fixed experimental requirements R1 to
R5 are derived: The experimental setup must enable ...

• R1: ...variable structural dynamic behaviors inbetween a test bearing and the
sensor(s) for influence investigation.

• R2: ...variable bearing faults to enable fault diagnosis.

• R3: ...a fixed bearing design: Constant bearing type, size and lubricant.

• R4: ...a fixed operating condition: Constant bearing forces, rotational speed and
temperature.

• R5: ...a fixed measurement chain: Constant sensor type, hardware and measure-
ment settings for data acquisition.

An additional requirement derives from the state of research of available scientific datasets
for bearing fault diagnosis, presented in section 2.3.3. A shortcoming within those data
sets is that they do not provide consistently separated training and testing experiments
for the exact same faults and operating conditions. Thus, to test a ML model, training
and testing in past literature usually is performed based on exactly the same experi-
mental runs. This cannot ensure that the actual bearing fault is detected, since other
test bench properties, such as the joint stiffness of screw connections, may have changed
during the process of bearing replacement. These changes can cause the vibration data
to differ between different experimental runs, even without any fault modifications being
introduced to the bearing. To eliminate the ambiguous cause of distinguishable vibration
signals for fault diagnosis, the following additional requirement R6 is set up:

• R6: Training data and testing data must be acquired from separated experimental
runs.

In addition to the previously stated fixed requirements, an additional wish is set up
for the experimental design. As this research is motivated by enhancing bearing fault
diagnosis for automotive e-machine applications, the following would be beneficial:

• R7: Ideally, the data for bearing fault diagnosis is acquired from a real e-machine
which is designed for automotive applications.

Using all the requirements presented above, the experimental concept is introduced
within the following section.
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5.1.2. Experimental Concept
Main goal of the experimental concept is to meet the fixed requirements R1 to R6
and the wish R7. Furthermore, the concept shall be as simple as possible to minimize
uncertainties resulting from experimental complexity.
Addressing requirement R1, there are different possibilities to vary the vibration trans-
mission path resulting from the structural dynamic properties. As already shown in
figure 5.1, the structural properties depend on the machine’s geometry, the materials of
the single parts as well as their joints. Additionally, the positioning of the sensor does
influence the measured vibration. In order to elaborate Research Questions 1 and 3,
the variation of one single influencing factor on the vibration transmission is sufficient.
Among the given options, the most simple solution for varying the transmission path
inbetween bearing and sensor is to mount multiple sensors of the same type at different
locations on a single test bench structure.
In order to fullfill requirement R2, two alternatives are feasible in accordance with the
literature, as already introduced in section 2.3.3. On the one hand, faulty bearings can
be prepared in advance and then let run inside the test bench. Since the corresponding
labels of the prepared faults are known, this concept enables fault diagnosis through
supervised learning via classification. On the other hand, naturally progressing bearing
faults can be used to build a regression task. The regression concept brings uncertainties
regarding labeling, since the bearing fault cannot distinctly be assessed during complete
test run operation. In comparison, the classification concept can be applied in a simpler
and more precise way based on bearing faults being prepared in advance. Therefore,
it is the preferred concept for the present investigations. In particular, it is aimed for
a classification based on balanced data. This means that all classes set up shall be
represented by an equal amount of data samples.
According to requirements R3 to R5, all further influencing factors are supposed to
remain constant during the experimental procedure. To ensure this, one single technical
system is to be used at constant operating conditions for all the experimental runs.
Additionally, to fulfill the wish R7, the experimental investigations shall focus on a
rolling bearing inside an automotive e-machine.
Addressing requirement R6, each prepared bearing has to run within two separated ex-
perimental runs to provide clearly separated experimental data for training and testing.
For further bias reduction, the order of the experimental test runs is to be shuffled in-
between the two experimental series. Taking into account the considerations outlined
above, the derived experimental concept and the subsequent data processing are visual-
ized in figure 5.2. According to this concept, the data is acquired from two independent
experimental series A and B. Within each series, the same prepared test bearings are
run at constant operating conditions within the same test bench e-machine. The number
of differently prepared bearings for classification is denoted by NC. To ensure different
structural dynamic properties, data is recorded from a number of individual sensors NS
of the same sensor model, each placed at a different location at the test bench.
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Figure 5.2.: Concept for the experimental data processing.

For final evaluation of the ML-based fault diagnosis models regarding their transferabil-
ity, a cross-validation is used. Therefore, per iteration during cross-validation only one
sensor channel from one experimental series is used for the training step. For perfor-
mance evaluation realized within the testing step, the predictions based on the remaining
NS − 1 sensor channel data from the second experimental series are used for accuracy
determination. Since the sensor data used for training can be varied inbetween all NS
sensor channels from both of the experimental series, this conceptual setup allows for a
cross-validation with 2 ·NS folds. This enables statistical analysis of the fault diagnosis
results for model evaluation.

5.2. Test Bench Setup
According to the experimental requirements presented in section 5.1.1, the test bench
in use is built for research on bearing fault diagnosis in e-machine applications. The
particular e-machine in use for the present investigations is a separate motor-generator
with 60 kW of nominal power. Specifically, it is a Permanent-Magnet Synchronous Mo-
tor (PMSM), primarily developed for use in off-highway applications for the automotive
industry and mobile machinery. Its detailed specifications are provided within the ap-
pendix at table B.1. A picture of the complete test bench setup including the described
PMSM is shown in figure 5.3.
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Figure 5.3.: Picture of the e-machine bearing fault test bench.

Additionally, the interactions inbetween the test bench components are schematically
visualized in figure 5.4.

Coolant in/out U V W

CAN Interface

PC

High Voltage DC Source

Inverter

PMSM

Data Acquisition System

Accelerometers

USB

Ethernet

CAN

Coaxial

Figure 5.4.: Schematic test bench setup;
Image sources: Accelerometers [88], PMSM [89], Inverter [90].

The high voltage Direct Current (DC) source provides 400 V to power the inverter.
The target rotational speed of the PMSM can be set at the Personal Computer (PC).
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The Controller Area Network (CAN) interface is connected to the PC and provides the
control signals to the inverter. Based on the control target, the inverter supplies the
corresponding phase currents to the PMSM.
The main machine element of interest during the investiations within the present work is
one of the two ball bearings inside the PMSM, which is located at the shaft connection
side. For further details on the internals of the PMSM, figure 5.5 provides a sectional
view.

Figure 5.5.: Sectional CAD visualization of the PMSM.

In addition to the CAD visualization in figure 5.5, figure 5.6 presents a picture of the
PMSM as it is mounted on the test bench. For data acquisition, three PCB Piezotronics
Model 356A15 triaxial accelerometers are glued to the test bench at different locations.
The placements of the accelerometers are selected to have different vibration transmis-
sions inbetween test bearing and sensors. Therefore, sensor 1 is placed at the the solid
steel mounting plate of the test bench construction. Sensors 2 and 3 are mounted di-
rectly onto the PMSM, sensor 2 beeing located near to the test bearing and sensor 3
having a greater distance in axial direction.
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Figure 5.6.: Sensor placements at the test bench.

The differences of the vibration transmissions inbetween the test bearing and the different
sensors are verified by measuring the FRFs, see section 7.1.1. Each sensor comprises
three separate channels according to their x-, y- and z-directions. The total of nine
sensor channels of the three sensors are connected to a data acquisition system via
coaxial cables, which itself connects to the PC via Ethernet. Guided by the publicly
available data sets, presented in section 2.3.3, a sampling rate of 20 kHz is chosen for
data acquisition. To satisfy the Nyquist-Shannon sampling theorem [91], an anti-aliasing
filter is used inside the acquisition system to suppress any analog frequency components
above 10 kHz. Specifically, an 8th-order low-pass with Cauer characteristics is used for
this purpose at a cutoff frequency of 8 kHz. Furthermore, the acceleration amplitude is
recorded with a resolution of 24 bits.

5.3. Preparation of Bearing Faults
Within section 5.1.2, the experimental concept and the design for a classification-based
data processing was derived. Based on this experimental design, the bearing faults have
to be prepared, which are to be classified later on.
The test bearings inside the test bench PMSM are specified to be 6207 deep groove
ball bearings with a radial bearing clearance of C3H and sealings of type 2Z. The cages
are made of plastic in a snap-type design and the lubrication is provided by grease.
Specifically, a heat-resistant and low-noise urea grease is used, which is designed for use
in outer ring rotating bearings. Figure 5.7 shows the components of a disassembled test
bearing without grease.
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Figure 5.7.: Partially disassembled test bearing.

Guided by the fundamentals on damaging mechanism presented in section 2.3.1, four
specific bearing faults are selected for preparation. Here, the aim is to represent a wide
variety of damaging mechanisms. The naming of the prepared bearing faults, their
description and the represented damaging mechanisms are listed in table 5.1. For the
failure modes, the naming conventions as given by ISO 15243 [31] are used, which were
already introduced in table 2.1. In addition to the four bearing faults, an undamaged
reference bearing is used for the investigations.

Table 5.1.: Bearing faults mapped to failure modes.
Bearing name Bearing fault description Represented failure mode

Reference No fault No failure

Brinell Static overload at 2 · C0 Plastic deformation

Corrosion Corrosion in hydrochloric acid for 2 h Corrosion

IR Laser Inner race laser-ablated 120 µm groove Rolling contact fatigue

OR Laser Inner race laser-ablated 120 µm groove Rolling contact fatigue

Thus, the 5 different bearings shown in figure 5.8 are prepared, which are to be detected
later using the ML-based fault diagnosis. Accordingly, the classification algorithms have
to distinguish between NC = 5 different classes, which are specified by the bearing
names.
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Figure 5.8.: Preparated bearing faults.

To prepare the Brinell fault, first, one of the two bearing shields is removed to reveal the
ball locations. Next, the bearing is placed at a hydraulic press as visualized in figure 5.8
(Brinell), sitting at its inner ring. A force of 30.6 kN is applied radially to the outer
ring, with one of the balls located in the center to transmit the maximum amount of
force. The applied force corresponds to twice the basic static load rating C0 = 15.3 kN
of the type 6207 bearing. Accordingly, this static overload leads to plastic deformations
at the contact areas. After introducing the Brinell fault, the shield is reinstalled and the
bearing is ready for the experimental runs.
For the preparation of the Corrosion, Inner Race (IR) Laser and Outer Race (OR)
Laser faults, the two shields and the grease are removed completely. For the corrosion
fault, the bearing is placed into hydrochloric acid for 2 hours. Afterwards, it is cleaned,
refilled with new grease and the shields are reinstalled. For the IR and OR Laser faults,
additionally, the snap-type cage is removed in a non-destructive way. Next, the balls are
pushed aside and fixed to enable the laser ablation process. After introducing the faults
by using an ultrashort pulse laser, the bearings are cleaned and all parts are remounted,
including the insertion of new grease.
For further fault specification, figures 5.9 and 5.10 show surface topographies of the
IR Laser and OR Laser faults. The surface topographies presented in these figures are
measured after performing the experimental runs. Thus, the bearings and their faults
are already run-in before measuring the topographies. The measurements are conducted
with a Hommel Etamic Waveline 920 which uses a tactile method for scanning the sur-
face. Reason for using the tactile measurement instead of other surface measurement
techniques like optical measurements is the accessibility of the raceways. The tactile
measurement technique does not require the bearings’ inner and outer rings to be dis-
assembled completely. As the rings would have to be deformed during this complete
disassembly, plastic deformation of the material could not be ruled out. This is therefore
avoided here by using the tactile measurement, for which only bearing shields, grease
and cage have to be removed to obtain the surface measurements.
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Figure 5.9.: Measured topography of the IR Laser fault.

Both IR and OR Laser faults show a width of 120 µm. The balls of the given type 6207
bearings have got diameters of 11.11 mm. Assuming ideal kinematics for a ball passing
the IR Laser fault, the generated movement of the ball in radial direction is limited to
0.4 µm due to the small fault width. The depth of the fault is 5 µm with only slight
variations in axial direction. Thus, the fault depth does not constrain the ball movement
from a kinematic point of view. Overall, the generated IR and OR faults are considered
to be of very little severity.
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Figure 5.10.: Measured topography of the OR Laser fault.

The IR and OR faults are not perfectly centered in axial direction. To ensure that
the balls get in contact with the faults during the later experiments, the bearings are
oriented inside the PMSM by taking the contact angle, which is dependent on the axially

49



5. Experimental Data Acquisition

applied preloading forces, into account. Having prepared all five bearings, the following
section 5.4 explains the procedure for conducting the experiments.

5.4. Experimental Procedure
As already derived conceptually in section 5.1.2, each of the prepared bearings is to be
installed two separate times within the PMSM. In practice, two separate experimental
series A and B are performed in sequential order. Shuffling the order of the experimental
runs inbetween both series as shown in figure 5.11 avoids bias that could arise from the
experimental order.

Series A experiments

Order Test bearing

1 IR Laser fault

2 OR Laser fault

3 Brinell fault

4 Corrosion fault

5 Reference

Series B experiments

Order Test bearing

6 OR Laser fault

7 Reference

8 IR Laser fault

9 Brinell fault

10 Corrosion fault

Figure 5.11.: Order of the test bearings within two separate experimental series.

The exchange of the test bearing requires a comprehensive procedure of disassembly and
reassembly. The steps to perform during the process of disassembly are briefly outlined
within the following list:

• Disconnect all cables and dismount the PMSM from the test bench.

• Transport the PMSM to the nearby workshop and mount it at the modified lathe,
visualized in figure 5.12.

• Open the PMSMs back side and extract the stator from the rotor.

• Change the test bearing.

Once the test bearing is replaced, the entire process is performed in reverse to reassemble
the PMSM on the test bench.
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Figure 5.12.: Picture of the PMSM at a modified lathe during bearing replacement.

When mounting a test bearing inside the PMSM, which has got a prepared fault on its
outer race, its orientation with respect to radial, gravitational forces is crucial. Thus,
for the OR Laser and Brinell faults, the outer rings orientation is ensured to have its
main fault at the bottom side of the PMSM. In this way, the fault location is ensured
to be inside the load zone due to the rotors gravitational forces.
During reassembly of the PMSM and its installation on the test bench, it is particularly
important to keep the assembly process controlled to minimize changes with respect to
structural dynamics. These changes potentially can occur due to differing properties of
the joints, such as their stiffness and damping. Therefore, all screws are tightened in a
consistent sequence using defined torques. Additionally, a dedicated lubricant is applied
to the screw threads to minimize fluctuations in the tightening forces due to varying
coefficients of friction.
Once the test bearing is replaced and the PMSM is set up again at the test bench, the
experimental run can start. As already specified for the experimental requirements in
section 5.1.1, the operating conditions shall be kept constant for all experimental runs
within this work. For this purpose, each experiment is performed at a fixed rotational
speed of 3500 rpm. The motor is running freely without any torque applied. Additionally,
the motor is permanently cooled by a 15 °C water-based coolant. As visualized in figure
5.13, the PMSM runs for 5 hours before the actual measurement acquisition for the later
investigations takes place in order to enable sufficient run-in of the bearing and to ensure
a quasi-steady-state operating condition. After run-in, measurement data is recorded
for 5 minutes.
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…Bearing 

replacement
Run-in:

5 h at 3500 rpm

Measurement:

5 min at 3500 rpm

Bearing 

replacement

Figure 5.13.: Sequence of the experimental procedure for data acquisition.

Accordingly, 300 seconds of measurement data are acquired from each of the 9 sensor
channels per experimental run. This data acquisition is carried out for all 10 experi-
mental runs, using each of the 5 different bearings twice, as already described in figure
5.11. Given the resulting set of vibration data, the now following chapter 6 addresses
the ML-based fault diagnosis.
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6. Fault Diagnosis Based on Vibration
Data

This chapter aims to answer Research Question 1 by investigating the fault diagnosis
performance based on vibration data. Therefore, first the measured data itself is explored
in section 6.1 using several techniques of visualization. Section 6.2 then introduces the
procedure for evaluating the transferability of the data-driven fault diagnosis models.
Based on the feature engineering investigations and ML hyperparameter optimizations
described in sections 6.3 and 6.4, the resulting diagnosis performance of the vibration
based model is presented and concluded with respect to the former Research Question
1 in section 6.5.

6.1. Data Exploration
The present section focuses on the explorative analysis of the recorded measurement data
in order to perform a plausibility check for each individual bearing fault measurement.
Additionally, the differences inbetween various sensor channels are analyzed. Therefore,
different visualizations are utilized to inspect the data in time-domain, frequency-domain,
and time-frequency-domain.
For a first visualization, figure 6.1 shows the time-domain RMS, calulated for each single
measurement second and plotted for the 300 seconds of recorded measurement data. As
already introduced in section 2.3.2, the RMS-based analysis of an acceleration signal
enables the comparison of the overall vibration strength. To preserve the clarity within
figure 6.1, only three sensor channels and two experimental runs are visualized. For the
sensor channels, the signals of the axial directions of each physical sensor (1z, 2x and
3x) are chosen. The corresponding sensor placements and their axis orientations can
be found in figure 5.6. For now, only the Reference bearing and the prepared IR Laser
fault experimental runs from series A are visualized. For descriptions of the prepared
bearings, please refer to section 5.3.
The measurements are exposed to little fluctuations over time. This is to be expected as
the operating conditions are constant for the complete experiments. However, both the
change of the sensor channel and the bearing class make the signals RMS differ. One very
important thing to notice in figure 6.1 is that the IR Laser fault cannot consistently be
distinguished from the Reference bearing for the 3 displayed sensor channels by setting
a single RMS threshold. This gives a major first hint on the main challenge regarding
transferability of fault diagnosis models.
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Figure 6.1.: RMS of acceleration for exemplary measurements from experimental series A.

To further expand the RMS-based analysis by using all sensor channels and experiments,
figure 6.2 shows the RMS of the entire 300 seconds of measurement for each individual
experimental run and each sensor channel.
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Figure 6.2.: Comparison of RMS values for each experiment and sensor channel.
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Clear differences are visible, correlated to the different prepared bearings and to the
sensor channels. Looking at the different bearings, the Corrosion fault causes the most
powerful RMS values, followed by the Brinell fault. Both IR Laser and OR Laser faults
show comparatively weak RMS values and thus, are very close to the Reference bear-
ing. When comparing the two experimental series A and B, only slight differences are
obtained. In general, the RMS values of experimental series B are slightly lower than
those of experimental series A. This may be related to the additional 5 hours of run-in
of each bearing at the beginning of the series B experimental runs, which presumably
smoothes out the faults.
For further analysis within the subsequent paragraphs, data is plotted for single sensor
channels and for every bearing fault individually. For the reason of compactness, only
data excerpts from experimental series A are shown in detail. As a first time-domain
visualization, figure 6.3 shows an exemplary excerpt of the OR Laser fault measurement
in time-domain for sensor channel 2x. Therefore, the raw data is plotted alongside
its envelope signal. The envelope signal is computed using the HT, the mathematical
foundations of which are presented in section 4.3.4.
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Figure 6.3.: Time-domain data and envelope signal for OR Laser fault from channel 2x.

1

BPFO

As already described by Randall and Antoni [39], a local outer race fault within
the load zone of the bearing leads to periodic force excitations. For a system with
fixed outer ring and rotating inner ring, this periodic excitation has a regular behavior.
In figure 6.3, the HT-based instantaneous amplitude provides an envelope of the raw
acceleration signal and thus, visualizes the modulation of the acceleration amplitude.
The rate of this modulation corresponds to the force excitation rate and is given by the
fundamental frequency BPFO. For information on the fundamental frequencies, please
refer to section 2.3.2.
To enable a more indepth analysis of the visualized data, the inner ring frequency as well
as the fundamental frequencies are calculated for the given type 6207 bearing and sum-
marized in table 6.1. The bearing dimensions necessary for the underlying calculations
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can be found in the appendix at table B.2. The contact angle ϕ is dependent on the
applied bearing forces and thus not specifically predetermined by geometry. Instead,
it is derived to be ϕ = 13 ° by fitting the calculated fundamental frequencies to the
measured excitation frequencies within the acquired acceleration data.

Table 6.1.: Fundamental frequencies of type 6207 deep groove ball bearing at inner ring
speed fi = 3500 rpm.

Frequency Period duration Order of fi

fi 58.3 Hz 17.15 ms 1

BPFI 315.6 Hz 3.17 ms 5.41

BPFO 209.4 Hz 4.78 ms 3.59

FTF 23.3 Hz 42.92 ms 0.40

BSF 134.7 Hz 7.42 ms 2.31

Knowing the calculated BPFO and the corresponding period duration of 4.78 ms, this
duration can be spotted in figure 6.3 as the distance between two maxima of the instan-
taneous amplitude.
For a further visualization, exactly the same time frame from figure 6.3 is used in fig-
ure 6.4 for time-frequency CWT visualization. For fundamentals on the CWT and an
explanation of the main differences to the STFT, please refer to section 4.3.3. In the
given case, a morlet wavelet is used to create this image representation.

Figure 6.4.: CWT for OR Laser fault from channel 2x.

Again, the timings of the force excitations can be detected. Additionally, the acceleration
response frequencies become visible at high frequency ranges around 6 to 10 kHz for the
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given case. The 10 kHz upper limit is constrained by the measurement frequency of
20 kHz. Additionally, the low-pass anti-aliasing filter starts suppressing the amplitudes
from 8 kHz on. Most probably, the structure is responding with even higher frequencies
in the range above 10 kHz which cannot be detected here.
An additional visualization technique for traditional fault diagnosis is presented in fig-
ure 6.5. Here, the HT-based instantaneous amplitude, which was shown in figure 6.3,
is transformed into frequency-domain via FFT, resulting in the envelope spectrum. In
addition to the envelope’s amplitude in frequency-domain, the orders of the inner ring
frequency fi as well as the orders of BPFI and BPFO are visualized as vertical lines.
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Figure 6.5.: Envelope spectrum for OR Laser fault from channel 2x.

It is apparent that the BPFO and its higher orders are very dominant within the enve-
lope signal of the OR Laser fault bearing. Thus, the outer race fault is well recognizable
using the measurement data from channel 2x. In contrast, figure 6.6 shows the envelope
spectrum of exactly the same moment in time, but from sensor channel 3x instead.
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Figure 6.6.: Envelope spectrum for OR Laser fault from channel 3x.
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In comparison to channel 2x, the BPFO orders are less dominant for channel 3x which
is why this fault cannot be identified as easily using traditional condition monitoring
techniques. For channel 3x, some harmonics of the inner ring frequency fi are much more
present within the envelope spectrum. Apparently, the signal properties are strongly
dependent on the sensor position. Due to reasons of compactness, not every channel is
explored in detail within the present chapter. However, additional visualizations of the
measurement data can be found in appendix C.
Moving back to channel 2x, next, data from the IR Laser fault is explored. Therefore, an
excerpt of the acceleration measurement and its instantaneous amplitude are visualized
in figure 6.7.
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Figure 6.7.: Time-domain data and envelope signal for IR Laser fault from channel 2x.

1

fi

1

BPFI

According to Randall and Antoni [39], a single inner race fault leads to periodic
excitations at the rate of the BPFI. With stationary outer ring and present radial
bearing forces, this excitation is additionally modulated in its amplitude by the inner
ring rotational frequency fi. This effect is caused by the fault passing through the
load zone. The roughly 3.17 ms period duration of BPFI can be seen in figure 6.7 as
the distance between two nearby excitations. Additionally, the amplitude modulation
of the excitation can be assigned to the inner ring frequency fi which is calculated to
have a period duration of 17.15 ms, see table 6.1. Next, figure 6.8 provides the CWT
representation of the IR Laser fault measurement.
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Figure 6.8.: CWT for IR Laser fault from channel 2x.

Again, the excitation events can be spotted in time. Similarly to the OR Laser fault,
the frequency response is particularly present in the high frequency range inbetween 6
and 10 kHz for the IR Laser fault.
Taking a look at the envelope spectrum of the IR Laser fault in figure 6.9, the BPFI
and its higher orders are dominant.
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Figure 6.9.: Envelope spectrum for IR Laser fault from channel 2x.

This clear identifiability of the inner race fault is lost to a significant amount when taking
a look at the same moment in time from channel 3x instead, visualized in figure 6.10.
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Figure 6.10.: Envelope spectrum for IR Laser fault from channel 3x.

This confirms the difference in signal properties for different sensor locations already
noticed for the OR Laser fault. The less pronounced fault-indicating properties observed
for sensor 3 can be explained by the larger distance between sensor and test bearing.
The sensor placements have already been shown in figure 5.6. Additionally, the greater
proximity of sensor 3 to the rotor of the PMSM might capture additional vibrations
caused by the electromagnetic forces inside the PMSM.
To preserve the compactness of this work, only the envelope spectra are shown for the
upcoming visualizations of Brinell, Corrosion and Reference bearings. Further CWT-
based time-frequency-domain visualizations for these three bearings are presented in the
appendix C within figures C.1 to C.3. Additionally, raw time-domain signals from each
of the 9 sensor channels for all five bearings can be inspected within figures C.4 to C.12.
Next, the Brinell fault is visualized in figure 6.11 by means of its envelope spectrum.

0 250 500 750 1000 1250 1500 1750 2000

Frequency f in Hz

0.00

0.25

0.50

0.75

1.00

1.25

In
st

an
ta

ne
ou

s
am

pl
it

ud
e
Z

a
in

m s2

n · fi
n ·BPFI
n ·BPFO

Figure 6.11.: Envelope spectrum for Brinell fault from channel 2x.

Looking at the fundamental frequencies, mainly the BPFI and its higher orders domi-
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nate. Thus, it can be concluded that the fault introduced is predominantly at the inner
race. The less affected outer race can be explained by the different radii of curvature
at inner and outer race, leading to higher contact stresses at the inner race during fault
introduction and thus, to higher plastic deformations.
Figure 6.12 shows the envelope spectrum for the Corrosion fault, which has the highest
amplitudes in comparison to the other bearing faults.
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Figure 6.12.: Envelope spectrum for Corrosion fault from channel 2x.

Here, the first order of both BPFI and BPFO are dominant. This is reasonable as the
Corrosion fault is present on the inner and outer races to a similar degree. Although this
fault is introduced all over the raceways and balls, there are spots that are affected more
severely by the corrosive surface alteration than others. This leads to the instantaneous
amplitude revealing the outer and inner race fundamental frequencies.
Finally, the same kind of visualization is given for the Reference bearing in figure 6.13.
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Figure 6.13.: Envelope spectrum for Reference bearing from channel 2x.
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Neither BPFI nor BPFO are magnified within this envelope spectrum, which fits the
non-existent fault. However, increased envelope amplitudes are noticeable which are
fitting exactly to the sixth order of the inner ring speed fi and its harmonics. This
phenomenon of the dominant sixth order rotational frequency can be explained by the
characteristic of the PMSM in use, having six pole pairs at the rotor. Thus, these
frequencies can be attributed to electromagnetic force excitations caused by the topology
of the PMSM.
To conclude the data exploration, bearing fundamental frequencies can be found in
plausible coherence to each bearing fault when looking at data from sensor channel 2x.
In comparison, the visualizations based on data from channel 3x are less suitable for
fault identification. This sensor-dependent suitability of the data for traditional fault
identification is caused by the different positions and orientations of the sensor channels.
For the sake of compactness, only sensors 2x and 3x have been visualized within the
present section. However, the differences in signal behavior extend to the remaining
sensor channels in an analogous manner. This can be seen in more detail within the
extended data visualizations provided in appendix C. Based upon the presented data, the
following sections aim to evaluate the transferability of vibration-based fault diagnosis
models to different sensor positions.

6.2. Procedure for Evaluation of Transferability
To evaluate the predictive performance in a transfer scenario to differing structural
dynamics, a fixed procedure has to be specified. Therefore, the processing pipeline
shown in figure 6.14 is set up and used as a framework.
The framework starts with the data collection, which was already described as part of
chapter 5. Accordingly, the data already explored in the previous section 6.1 is used
here. Next, the acceleration data is processed within the feature generation step. The
complete measurements with a length of 300 seconds are split into 1 second intervals, each
of which is used for feature calculation. These intervals of 1 second length ensure that at
least 20 periods of even the lowest fundamental frequency FTF = 23.3 Hz are contained.
The calculated values of all fundamental frequencies can be looked up in table 6.1. As
part of the later investigations within section 6.3, different feature generation techniques
are investigated with respect to the models predictive accuracy. Given the generated
features, a train-test split is performed. This split is executed using different so-called
transfer scenarios. These transfer scenarios are introduced in the context of figure 6.15
and thus elaborated in more detail within a subsequent paragraph.
To ensure suitable feature input ranges for the ML algorithms, feature scaling is generally
recommended, see section 4.1.1. One common implementation of feature scaling is the
standardization, which is also referred to as the calculation of the so-called Z-score. This
technique scales the mean of the feature distribution to be 0 and its standard deviation
to be 1 [92].
According to equation (6.1), the features split for training are used to fit a standard-
scaler by calculating the mean µ(xitrain) and standard deviation σ(xitrain). Next, the
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features for both training and testing can be standardized by using the scaling rule
defined from the training features. The standardized feature samples are denoted by x̃i.

x̃i =
xi − µ(xitrain)

σ(xitrain)
(6.1)

Data collection

• 5 bearings

• 2 experimental series

• 9 sensor channels

Feature generation

• Processing methods

• Feature formulas

Train-test split

• Transfer scenarios: 0D, 

1D-E or 2D

Standard-scaling:

Fit and transform

Standard-scaling: 

Transform

Acceleration data

Features

Features for training Features for testing

Fault predictions

Fitted scaler

Standardized features for training

Standardized features for testing

Model evaluation

• Accuracy distributions

• Confusion matrices

Machine Learning: 

Testing

• ML algorithms

• Hyperparameters

Machine Learning: 

Training

• ML algorithms

• Hyperparameters

18-fold cross-validation

Trained ML model

True faults

Figure 6.14.: Data processing framework for model evaluation.

After standardization, the training features are used to train the ML algorithm. Different
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ML algorithms are investivated within the present chapter. To ensure well suited con-
figurations of the algorithms in use, their hyperparameters are optimized in section 6.4.
After training, the scaled features for testing are given to the trained ML algorithm to
make predictions on the bearing faults. As a final step, the performance of the model
can be evaluated using the fault predictions and the ground truth of the faults which is
known from the data set. Since train-test splits are performed multiple times by making
use of cross-validation techniques, the predictive accuracies can be evaluated statistically
via their distributions. Furthermore, the predictions are analysed by utilizing confusion
matrices.
The different transfer scenarios which are taken into account within the present work
are categorized in figure 6.15. These scenarios represent different ways to split the data
for training and testing. Two dimensions are introduced. On the one hand, a transfer
to a different experimental series is investigated to evaluate the influence of the bearing
removal and installation process on the predictive accuracy. On the other hand, the
transfer to different sensor positions is investigated to address the Research Questions
defined in section 3.2.

Same
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Different

experimental series

Same

sensor position
0D: No transfer

1D-E: Transfer to 

different 

experimental series

Different

sensor position

1D-S: Transfer to 

different sensor 

position

2D: Transfer to 

different sensor 

position at different 

experimental series

Figure 6.15.: Assignment of different scenarios to the dimensions of transfer between train-
ing and testing.

Three of the four quadrants visualized in figure 6.15 are considered within this work.
First, the 0D scenario without any transfer is used to generate a benchmark since this
is the common way how fault diagnosis algorithms are evaluated in literature. For the
0D scenario, stratified train-test splits at ratios of 2/3 for training and 1/3 for testing
data are performed using the same experimental series for training and testing. At this
point, the term stratified refers to the proportions of all classes in the training and test
sets being representative of the entire data set. Second, the 1D-E transfer to different
experiments is compared to the 0D scenario to evaluate the influence of the bearing
removal and installation process, which was described in section 5.4, on the predictions.
As visualized in figure 6.16, the 1D-E transfer scenario to different experimental series is
used to select a feature set as well as optimize the hyperparameters of the ML algorithms.
Finally, the optimized models are evaluated by their transfer capabilities to different
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structural dynamics using the 2D transfer scenario to a different sensor position from
different experiments. The 1D-S scenario mentioned in figure 6.15 would not provide
added value for this work, as it does not represent an application-relevant model transfer.
Therefore, it is not considered any further here.
For both the 1D-E and 2D transfer scenarios, a cross-validation procedure is implemented
by making use of the different sensor channels and the separate experimental series. This
was already conceptually designed in section 5.1.2 and is now refined within figure 6.16.
With the given 2 experimental series A and B, introduced in figure 5.11, and the NS = 9
given sensor channels, a total of 2 · 9 = 18 cross-validation iterations can be performed.
This 18-fold cross-validation involves training and testing 18 individual times for each
setting to be examined.
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Figure 6.16.: Workflow incorporating the cross-validation procedure for model tuning with
the 1D-E scenario and model evaluation with the 2D scenario.
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To ensure an unbiased evaluation of the models’ performances, the final evaluation must
be carried out on testing data that was never given to the algorithm during the process
of feature set selection or ML hyperparameter tuning. This is ensured by decoupling the
2D scenario from the 1D-E-based feature and hyperparameter investigations.
Within the following two sections, the procedure for feature set selection and ML hyper-
parameter tuning is described. For this purpose, section 6.3 presents feature engineering
investigations first, using a predefined ML algorithm. Second, multiple ML algorithms
are introduced and tuned with respect to their hyperparameters in section 6.4 to optimize
their performances.

6.3. Investigations on Feature Engineering
A wide variety of techniques for feature engineering is summarized from the literature in
chapter 4.2. In orientation to a prior publication of the present author [72], a selection
of feature sets is created by combining signal processing methods and feature formulas.
Therefore, the three main signal processing methods RAW, ENV and FB are introduced
and presented in figure 6.17.
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Figure 6.17.: Feature generation using different processing methods.

Building upon these 3 methods, different combinations of feature formulas are used for
the feature engineering investigations. All investigated feature sets are listed in table 6.2
and described within the subsequent paragraphs.
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Table 6.2.: Feature set explanations.
Feature Set Name Processing

Method
Feature Formulas Complete

Feature Count

RAW_TD Raw signal 28 time-domain features:
T1 to T28

28

RAW_FD Raw signal 14 frequency-domain
features: F1 to F14

14

RAW_Lei Raw signal 25 features according to
Lei et al.: T1 to T11 and

F1 to F14

25

RAW_all Raw signal All 42 features: T1 to
T28 and F1 to F14

42

ENV_Lei Envelope signal 25 features according to
Lei et al.: T1 to T11 and

F1 to F14

25

ENV_all Envelope signal All 42 features: T1 to
T28 and F1 to F14

42

FB4_FD Frequency bands
NFB = 4

14 frequency-domain
features: F1 to F14

56

FB10_FD Frequency bands
NFB = 10

14 frequency-domain
features: F1 to F14

140

FB25_FD Frequency bands
NFB = 25

14 frequency-domain
features: F1 to F14

350

FB50_FD Frequency bands
NFB = 50

14 frequency-domain
features: F1 to F14

700

FB50_FD-mean Frequency bands
NFB = 50

1 feature: Mean value in
frequency domain: F1

50

FB100_FD-mean Frequency bands
NFB = 100

1 feature: Mean value in
frequency domain: F1

100

FB250_FD-mean Frequency bands
NFB = 250

1 feature: Mean value in
frequency domain: F1

250

FB500_FD-mean Frequency bands
NFB = 500

1 feature: Mean value in
frequency domain: F1

500
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For the calculation of the first four feature sets, the raw signal is used. Besides the
feature sets calculated from time-domain (TD) and frequency-domain (FD) only, the
feature set proposed by Lei [71] is used, combining both time- and frequency domain
features. Additionally, the expanded feature set using all 42 feature formulas collected
in tables 4.2 and 4.3 is used for comparison. To evaluate the impact of the envelope
analysis for feature generation, the features proposed by Lei as well as all 42 features
are applied to the HT-based envelope signal within two additional feature sets.
For the remaining eight feature sets, the focus is placed at the Frequency Band (FB)
processing method, which was already introduced in section 4.3.1. Previous research of
the present author on different data sets already found this processing method to work
particularly well. This good performance was first shown on a Bosch data set acquired
to enable a regression task [81]. Additionally, the publicly available CWRU data was
used to compare a variety of different feature engineering methods on a classification
task [72]. For implementing the FB processing method, the frequency-domain signal is
divided into equally sized frequency bands, as already introduced in section 4.3.1. Here,
the number of frequency bands NFB are chosen in orientation to the preferred numbers
of series proposed in DIN 323-1 [93]. Some deviations from DIN 323-1 are made to
keep the discrete frequencies, in this case characterised by a resolution of 1 Hz and a
range of up to 10 kHz, dividable by the number of frequency bands without remainders.
The maximum count of features is limited to 700 in order to constrain computational
effort. Two different sets of feature formulas are investigated for the FB method. On
the one hand, all FD features are used. On the other hand, only the mean value in
frequency-domain (FD-mean) is calculated for every frequency band.
Using the CWRU bearing fault data for feature engineering investigations in [81], feature
reduction techniques could not lead to increased prediction accuracies. For this reason,
and to avoid additional process complexity, no feature reduction is applied within the
present work. Instead, the complete feature sets, as defined in table 6.2, are compared
with respect to their ML-based prediction accuracies.
The selection of the best suited feature set and the hyperparameter tuning of multiple
ML algorithms are performed in sequential order due to limited computing capacities.
For reasons of comparability, all ML algorithms are to be trained and tested using the
same feature set. Although it cannot be guaranteed that the selected feature set works
in an optimal way for all of the different ML algorithms, the later shown results present
their good performances in comparison, see section 6.5. To select a feature set, a single
reference ML algorithm has to be specified for comparing the already defined feature sets.
A RF algorithm is selected for this purpose because it is known for its good performance
when using default hyperparameters without elaborate tuning [82]. For fundamentals on
the RF, please refer to section 4.1.1. According to Breiman [94], RFs are by design not
subject to the problem of overfitting due to the law of large numbers. This makes them
particularly well suited for the present application. For the feature set investigations,
the RF is parameterized with a number of DT estimators n_estimators = 500 and
a maximum tree depth max_depth = 20. All further hyperparameters remain to be
the default values as given by the Python software package scikit-learn. All software
packages and their version numbers in use are listed in the appendix at table B.3.
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The performances of the different feature sets in terms of their mean prediction accuracies
resulting from the classification of the NC = 5 bearing classes is shown in figure 6.18.
Here, each feature set is evaluated based on the three different transfer scenarios 0D,
1D-E and 2D.
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Figure 6.18.: Bar plot of mean predictive accuracies comparing the different feature sets;
with baseline RF.

First, lets take a look at the 0D scenario, visualized in blue. Almost all of the feature
sets enable the RF to achieve a perfect accuracy of 100 %. Only the RAW_TD feature
set falls very slightly behind with a mean accuracy of 99.5 %. All numerical values
represented in figure 6.18 can be looked up in the appendix at table D.1. The overall very
high accuracy of the 0D scenario shows the simplicity of this classification task. Since a
simple train-test split is performed based on the same experiments, it cannot be ensured
that the bearing fault itself is detected by the algorithm. Instead, unknown influencing
factors may have changed inbetween the experimental runs which may lead to their
separability. These changes can for example be caused by the disassembly and reassembly
of the e-machine, potentially effecting joint stiffnesses of the screw connections and thus,
changing the structural dynamics of the system.
To overcome the ambiguity about the cause leading to the data being distinguishable in
the 0D scenario, the 1D-E scenario was introduced in the context of figure 6.15. Here,
training and testing are performed on two completely separated experimental series to
ensure the detection of the actual bearing fault. The classification accuracies visualized
in figure 6.18 show that the bearing faults are much harder to predict in the 1D-E scenario
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in comparison to the 0D scenario. Taking a look at the orange bars, the mean accuracies
vary inbetween the different feature sets. Thus, their comparitive evaluation is enabled.
Besides comparing the mean of the cross-validation accuracies in figure 6.18, figure 6.19
additionally shows each single of the 18 cross-validation iterations as a point within a
boxplot to visualize the corresponding accuracy distributions. As already presented in
the context of figure 6.16, each of the 18 individual iterations within cross-validation
represents the procedure of ML training on one of the 9 sensor channels, using the data
from one of the two experimental series, and the evaluation of the trained model on the
testing data from the same sensor channel, but from the second experimental series.
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Figure 6.19.: Box plot of predictive accuracies comparing the different feature sets using
the 1D-E scenario; with baseline RF.

The box plot in figure 6.19 visualizes the accuracies of the single points by subdividing
their distributions into quarters:

• The middle line (here: orange) represents the median of the underlying distribu-
tion.

• The rectangle (here: blue) around the median visualizes the range inbetween the
first and third quartile.

• The whiskers (here: dark gray) start at the minimum and end at the maximum
value of the distribution.
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Starting the in-depth result analysis with the raw signal-based feature sets (RAW), the
frequency-domain RAW_FD features perform better than the time-domain RAW_TD
features. Combining both domains in RAW_Lei and RAW_all leads to even better
results. However, adding additional Features in comparison to the features proposed by
Lei et al. [70, 71] cannot improve the accuracy any further. This finding is in agreement
with the results presented in [72].
Using the HT to preprocess the signal for the envelope based feature sets ENV_Lei and
ENV_all leads to slight deteriorations of the mean accuracy and thus, is not recom-
mendable here.
The FB method with an increasing number of frequency bands can significantly increase
the prediction accuracies. Using 50 frequency bands and all 14 frequency-domain fea-
tures in the FB50_FD feature set enables the first quartile of the cross-validation to
be at 100 % accuracy. The corresponding mean accuracy equals 99.3 %, which is the
best result achieved within these feature set investigations. Besides calculating all FD
features, the four feature sets shown on the right of figures 6.18 and 6.19 use only the
FD-mean feature formula for every single frequency band. It can be seen that further
increased frequency resolution induced by the larger number of frequency bands can
increase prediction accuracies, but does not outperform the FB50_FD feature set which
uses all FD features with a smaller number of frequency bands.
A more indepth look at figure 6.18 allows for the comparison between the prediction
accuracies of the 1D-E scenario and the 2D scenario. It can be seen that all 2D scenario-
based results are worse than using the 1D-E scenario. This is to be expected due to the
added sensor channel transfer dimension. Nevertheless, the trends regarding feature set
performances in the 1D-E and 2D scenarios correlate very well.
Overall, it is shown for both the 0D and the 1D-E scenarios that, with a sufficiently
sophisticated feature set, a correct classification of almost all data samples is achieved.
However, as presented in section 6.1 and appendix C, depending on the sensor channel,
some of the faults are not easy to identify when examining the data visually. Accordingly,
the superiority of a data-driven fault diagnosis approach in comparison to purely human-
based fault detection becomes apparent.
For further investigations in the upcoming sections, the FB50_FD feature set is selected
due to its overall excellent performance within the previously presented feature set com-
parison. The now following section 6.4 focuses on the use of further ML algorithms and
the optimization of their hyperparameters.

6.4. Hyperparameter Optimizations for Multiple ML
Algorithms

After feature generation, the feature data is available in tabular format. As already
visualized in figure 6.14, the next steps are to perform a train-test split, standardize
each feature distribution and apply an ML algorihm for training and testing. In the
given case of bearing fault diagnosis, five different classes are to be distinguished, each
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corresponding to a single prepared bearing. Accordingly, the ML task is categorized to
be supervised learning via multiclass-classification. As already presented in section 4.1.1,
a wide variety of ML algorithms for multiclass-classification exists. A selection has to
be made for the further investigations. However, using multiple ML algorithms later on
allows for insights on the general applicability of the methods developed in this work.
For the present fault diagnosis case, the main challenge for the algorithm is to be trans-
ferable to different experimental runs and sensor positions. Thus, the most important
requirement for the ML algorithm is to generalize very well. With generalization as
main selection criterion, the four algorithms k-NN, RF, ANN and SVM are chosen on
the basis of the considerations presented in section 4.1.1.
As already introduced in section 4.1.2, the hyperparameters of ML algorithms can be
tuned to configure their architectures and thus their overall learning behaviors. Tuning
these hyperparameters can considerably influence the performance of the final model.
Therefore, they have to be adjusted to the present task. An established approach for
tuning the hyperparameters of ML models in order to achieve optimal performances on
a given task is to use Bayesian Optimization (BO). For the present work, the BO-TPE
optimization algorithm is applied, the procedure of which was already explained within
section 4.1.2.
For implementation of the BO-TPE hyperparameter optimization, this work makes use of
the Python software package hyperopt [95]. For the ML algorithms, the implementations
provided by scikit-learn are used. For an overview on the software versions in use, please
refer to table B.3 in the appendix. The hyperparameters to be optimized in the present
work are selected based on the overview on hyperparameter optimization given by Yang
and Shami [66, p.310]. Table 6.3 presents the selected hyperparameters to be optimized,
their search spaces as well as their final values resulting from the optimization process.
As described within figure 6.16, the hyperparameter optimization is performed using the
1D-E scenario. The objective of this hyperparameter optimization is the maximization
of the mean accuracy from the cross-validation procedure. Within the feature engineer-
ing investigations already presented in section 6.3, the FB50_FD feature set shows the
best performance and therefore is used for the final answering of Research Questions 1
and 3. However, since the mean prediction accuracy with the FB50_FD feature set and
baseline RF already reaches 99.3 %, there is very little headroom left for hyperparam-
eter optimization. To generate a larger headroom, the less well performing feature set
FB10_FD is used for this purpose. At this point, it is assumed that the results of the hy-
perparameter optimization are approximately valid for the larger FB50_FD feature set
as well. For each of the four ML algorithms, the BO-TPE optimization process is carried
out for 500 iterative evaluations. As results, the best-performing ML hyperparameter
configurations are given by the final values described in table 6.3.
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Table 6.3.: Configuration spaces for hyperparameter optimization and the final, configured
values.
Hyperparameter Type Search space Final value

k-NN n_neighbors Discrete [5, 300] 186

weights Categorical [”uniform”, ”distance”] ”uniform”

p Continuous [1, 2] 1.9

RF n_estimators Discrete [100, 1000] 135

max_depth Discrete [1, 20] 13

min_samples_leaf Discrete [1, 50] 24

max_features Continuous (0, 1] 0.415

max_samples Continuous (0, 1] 0.104

ANN hidden_layer_1_size Discrete [10, 200] 58

hidden_layer_2_size Discrete [10, 200] 149

hidden_layer_3_size Discrete [10, 200] 178

activation Categorical [”tanh”, ”relu”] ”tanh”

alpha Continuous [1e-3, 1e3] 0.0578

SVM C Continuous [1e-2, 1e3] 172

gamma Continuous [1e-8, 1e-3] 1.79e-7

The next section 6.5 aims to evaluate the transferability of vibration-based fault diag-
nosis models according to Research Question 1. For this purpose, the optimized ML
hyperparameters are used in combination with the best-performing FB50_FD feature
set.

6.5. Evaluation of Transferability
In a similar fashion to the feature engineering investigations already presented in figure
6.19, the predictive performance is now evaluated using the accuracy distributions of
the 18-fold cross-validations. Figure 6.20 on the one hand shows the accuracies of the
1D-E scenario, based on which the feature set and hyperparameters were chosen. On
the other hand, the performance for the 2D scenario is presented for comparison.
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Figure 6.20.: Box plot of predictive accuracies comparing the transfer scenarios 1D-E and
2D using acceleration data; with FB50_FD feature set and optimized hyper-
parameters.

All four presented ML algorithms clearly depict a large performance difference inbetween
the 1D-E and 2D scenarios. To supplement figure 6.20, table 6.4 provides the mean values
of the prediction accuracies.

Table 6.4.: Mean accuracy comparison between the transfer scenarios 1D-E and 2D using
acceleration data; with FB50_FD feature set and optimized hyperparameters.

Mean accuracies

ML algorithm 1D-E scenario 2D scenario

k-NN 100.0 % 81.6 %

RF 99.3 % 73.4 %

ANN 100.0 % 73.7 %

SVM 99.9 % 78.6 %

Both figure 6.20 and table 6.4 clearly show that transfering the trained ML algorithms to
a differing sensor position and thus, changing the acoustic transmission path inbetween
bearing and sensor, leads to significant losses in predictive accuracy. Comparing the
four different ML algorithms among each other, the accuracy results only differ slightly.
Taking an exemplary look at the ANN, perfect predictions without any misclassifications
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are achieved for the 1D scenario. In contrast, for the 2D scenario, about one quarter of
all predictions are misclassified.
For further analysis, the allocation of incorrect classifications is visualized using con-
fusion matrices. Since the four ML algorithms show qualitatively similar results, the
SVM algorithm is selected representatively for confusion matrix visualizations due to
its consistently good performance within this entire work and its very fast classification
time, see table 4.1, which make it suitable for industrial applications. The results for
the 1D scenario in figure 6.21 and the 2D-E scenario in figure 6.22 can be examined in
comparison.
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Figure 6.21.: Confusion matrix for the 1D-E scenario using acceleration data; with
FB50_FD feature set and hyperparameter-optimized SVM classifier.

Taking a look at the confusion matrix of the 1D-E scenario, 5400 predictions are evalu-
ated per bearing class. This number results from the 18-fold cross-validation, each using
300 samples per class for testing. Here, almost all predictions are made on the correct
classes corresponding to the diagonal of the matrix. Only very few missclassifications
are present for the Reference and IR Laser classes.
In contrast to the 1D-E scenario visualized in figure 6.21, figure 6.22 shows a lot more
incorrect predictions for the 2D scenario. For the 2D transfer scenario, 43200 predictions
on the testing data are evaluated per bearing class. This number is eight times higher
in comparison to the 1D scenario due to the eight sensor channels used for testing, see
figure 6.16.
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Figure 6.22.: Confusion matrix for the 2D scenario using acceleration data; with FB50_FD
feature set and hyperparameter-optimized SVM classifier.

Looking at the confusion matrix of the 2D scenario, the Corrosion fault is classified
correctly with the highest rate of 91.1 %. This advantage over the other classes can be
explained by the high severity of the Corrosion fault in comparison to the other faults,
which makes it easier to identify. For the remaining bearings, a smaller proportion of
predictions are correct. In particular, the IR Laser and OR Laser classes show high
rates of missclassification to the Reference bearing. This seems to be reasonable, as it
was already shown in figure 6.2 that the IR Laser and OR Laser faults only generate
slightly pronounced vibrations. Thus, their vibration measurements are close to the
measurements obtained with the Reference bearing.
In general, the confusions are widely spread inbetween all classes. It can be observed
that the confusions are not quite symmetrical to the diagonal. Accordingly, some faults
are more likely to be identified than others. Overall, the observations presented in the
two confusion matrices underline the already in figure 6.20 presented loss in predictive
accuracy when moving from the 1D to the 2D-E scenario.
To answer Research Question 1 in a conclusive way, the mean prediction accuracy for the
given investigations gets reduced from approximately 100 % to around 80 % as shown
in table 6.4. The exact loss in accuracy slightly depends on the ML algorithm in use.
As demonstrated, the acceleration-based fault diagnosis models are not well suited for a
transfer to a different sensor position, representing a change of the structural dynamic
properties. With the aim of overcoming this shortcoming in terms of transferability, the
next chapter proposes extended methodological concepts for bearing fault diagnosis.
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7. Model Extension Involving Domain
Knowledge

The previous chapter demonstrated that transferring a vibration-based ML model for
fault diagnosis to a different sensor position leads to a significant reduction of its pre-
dictive accuracy. It is therefore concluded that, given the current state of research, a
transfer of this kind is not recommended. Instead, a new ML-based fault diagnosis
model needs to be created based on new training data for every single structural dynam-
ics behavior. In particular, the training data has to incorporate all possible conditions
which are to be predicted from the operating data later on. The more complex the
requirements for the fault diagnosis model are, the more effort is required to collect the
necessary training data.
Section 6.1 explored that the different transmission paths between the bearing and the
different sensors cause the measured signals to have different properties. Now, with
regard to Research Question 2, the goal of the current chapter is to develop methodolog-
ical concepts that overcome the limitations imposed by different transmission paths. To
address this goal within the subsequent sections, two distinct conceptual approaches1

are proposed which incorporate knowledge of structure-borne sound propagation. The
main idea behind the newly proposed approaches is to enable the transferability of the
ML-based fault diagnosis model by incorporating an additional calibration step into the
chain of data processing. By introducing additional calibration data, whose acquisition
is aspired to be considerably less expensive in comparison to the original training data
acquisition, domain knowledge is contributed to the model. The underlying concept is
presented schematically in figure 7.1.

1Both of the two novel approaches introduced within the present chapter were filed as individual patent
applications at the German Patent and Trade Mark Office (DPMA):

• Approach 1: DPMA application number 10 2022 213 123.1

• Approach 2: DPMA application number 10 2023 213 129.3
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Figure 7.1.: Conceptual approach to improve transferability in comparison to the state of
research.

As conceptualized, in comparison to the state of research, the new approaches aim to
avoid the necessity of additional, time-intense and expensive training data acquisition for
every new system with different structural dynamics. To achieve this, the comparatively
little additional effort of acquiring calibration data is tolerated. Based upon this general
concept, two new approaches are presented in detail within the following sections 7.1
and 7.2.

7.1. Approach 1: Virtual Forces
To exclude the influence of differing structural dynamic properties using domain knowl-
edge, Approach 1 aims to calculate virtual, dynamic excitation forces at the bearing –
from here on shortly referred to as virtual forces. To achieve this, measured Frequency
Response Functions (FRFs) are used to calibrate the frequency domain data. The basic
idea of this approach can be shown with the help of figure 7.2.
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Figure 7.2.: Schematic visualization of FRFs.

During machine operation, the bearing fault dependent dynamic force excitation e leads
to accelerations a at the sensor positions. As already presented in section 6.1, the
acceleration differs for each sensor channel. Referring to the fundamentals on structure-
borne sound, introduced in section 4.4, this can be explained by the differing transmission
paths as part of the structure-borne sound propagation inbetween the bearing and the
different sensor positions. As presented in section 4.4.1, the FRF of a transmission path
can be described by its accelerance h.
For the virtual force approach, the key idea is to calculate virtual forces v as approximates
of the actual bearing force e by using knowledge of the sensors’ accelerations a and the
corresponding accelerances h. Therefore, each accelerance inbetween the bearing and
the different sensor channels has to be determined.

7.1.1. Determination of Frequency Response Functions
Building upon equation (4.15), the virtual forces are calculated using the known ac-
celeration measurements and additional measurements of the FRFs in terms of their
accelerances. The accelerance measurements are performed using the impulse hammer
method, already introduced in section 4.4.2.
It is worth mentioning that several preliminary attempts have been performed to carry
out these impulse hammer-based measurements using different experimental approaches.
This involves experimenting with different points of excitation next to the bearing’s
raceways, which could only be realized to a limited extend due to space constraints.
Additionally, reciprocal measurements are performed, for which the locations of the
force excitations and vibration measurements are reversed. In these preliminary tests,
the reciprocal measurements offer advantages in terms of realizability and reproducibility.
For these reasons, reciprocal accelerance measurements are presented in detail below and
subsequently used to calculate the virtual forces.
Most mechanical systems in reality are naturally subject to a certain degree of non-
linearity with respect to their structural dynamics [63, p.322]. However, a reciprocal
measurement is based on the assumption of linear system behavior [96]. For the pre-
sented case, using the e-machine test bench, this linearity cannot be clearly validated
due to experimental space constraints. Here, the assumption of linear frequency re-
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sponse functions is expected to be valid only to a limited extent because of the complex
structural design of the e-machine including several joints, which may cause frictional
energy dissipation. Thus, the final results of the virtual force approach may be affected
by these uncertainties in determining the accelerances.
The experimental setup for acquiring the FRF measurements for the later presented
virtual force calculations is shown in figure 7.3.

Figure 7.3.: FRF measurement setup at the e-machine test bench.

In contrast to the original measurement setup which was used to acquire data from
the bearing experimental runs, presented in figure 5.6, instead of the actual sensors,
aluminium cubes are glued at the sensor positions to enable the force excitations with
the impulse hammer in all 3 spatial directions. To measure the acceleration response,
three PCB Piezotronics Model 356A03 triaxial accelerometers are glued inside a type
6207-C3 bearing at the outer ring. In contrast to the original test bearings prepared for
fault diagnosis in chapter 5.3, this bearing comes with a different cage design and offers
more installation space which is needed for mounting the accelerometers. The bearing
accelerometers are placed with an angular distance of 120°. Reason for the use of multiple
accelerometers is to measure a wider variety of transmission paths, since the real location
of force excitation inside the bearing depends on the fault location and can vary during
operation of the machine. A weighted average of the different bearing sensors’ FRFs are
used for final FRF determination. More specifically, the final accelerances are calculated
by using the mean values of the accelerances from each bearing sensor’s gravitational
direction.
For FRF measurement acquisition, the software ArtemiS SUITE is used. Within the
measurement prodecure, each spatial direction of the aluminium cubes is excited ten
times using the impulse hammer. Performing ten consecutive measurements on each
excitation point helps to ensure that the measurements are not corrupted by incorrect
hammer excitations. For these measurements, the hammer is equiped with an aluminum
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tip to enable short impulse durations which lead to high frequency ranges of the broad-
band excitation, see section 4.4.2. For each measurement, the impact force is measured
by the force sensor inside the hammer and the responding acceleration is recorded from
the bearing sensors. A single, exemplary hammer force excitation eh and the correspond-
ing acceleration response ah are visualized in figure 7.4.

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040

Time t in s

0

50

100

150

200

Fo
rc

e
ex

ci
ta

ti
on

e h
in

N

−10

−5

0

5

10

A
cc

el
er

at
io

n
re

sp
on

se
a

h
in

m s2

Figure 7.4.: Exemplary FRF measurement in time-domain.

In accordance with the mathematical foundations already explained in section 4.4.1, the
accelerance is determined in frequency-domain by making use of the convolution theorem.
First, both the hammer force and the responding acceleration signals are transformed
into frequency-domain via FFT. Second, the accelerance is determined by frequency-wise
division.

H(f) =
Ah(f)

Eh(f)
(7.1)

To visualize the differences inbetween the FRFs in frequency-domain, exemplary accel-
erances are presented in figure 7.5. Specifically, the axial directions of the individual
physical sensors (1z, 2x and 3x) are selected for this visualization. The positionings and
orientations of the sensor channels mentioned can be found in figure 5.6. Comparing
the three accelerance spectra in the logarithmically plotted diagram, particularly large
deviations are visible in the high frequency ranges from 7 to 10 kHz.
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Figure 7.5.: Exemplary accelerances in frequency-domain.

Based on the measured frequency-domain accelerances, the now following section 7.1.2
explains the virtual force determination.

7.1.2. Calculation of Virtual Bearing Force Spectra
The virtual force spectra are calculated on the basis of the bearing fault acceleration
measurements, the acquisition of which already was presented in chapter 5. By applying
the FFT on the acceleration time-domain signals, acceleration amplitude spectra are
generated. Figure 7.6 exemplarily shows these spectra for the 3 sensor channels already
considered in figure 7.5. For the bearing fault classes, only the Reference bearing and IR
Laser fault measurements from experimental series A are visualized due to the purpose
of visual clarity. To suppress the noisy behavior of the original spectrum, a Gaussian
filter is applied before generating the visualization by convolving the original frequency-
domain data with a Gaussian kernel function characterized by a standard deviation of
50 Hz. For further information on this Gaussian-based smoothening, please refer to
section 4.3.2. The Gaussian filtering is used for visual purposes only and is not applied
for the processing presented later for utilization of the ML algorithms.
Having both accelerations (figure 7.6) and accelerances (figure 7.5) in frequency-domain,
the virtual force spectra can be calculated by rearranging equation (4.15) and replacing
the actual excitation force E with the virtual force V .

V (f) =
A(f)

H(f)
(7.2)
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Similar to the acceleration spectra visualized in figure 7.6, figure 7.7 shows the Gaussian-
smoothed virtual force spectra.
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Figure 7.6.: Exemplary acceleration frequency-domain spectra.

Taking a comparitive look at figures 7.6 and 7.7, the overlap inbetween the Reference
bearing (blue) and IR Laser fault (orange) can be analysed.
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Figure 7.7.: Exemplary virtual force frequency-domain spectra.
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If all orange curves are clearly separated from all blue curves in terms of their amplitudes,
a well-defined distinction between the two classes is given. In contrast, if the blue and
orange curves strongly overlap, this input data limits the ML algorithms’ ability to
distinguish between the classes. This problem was already illustrated in an analogous
way using the time-domain RMS in figure 6.1. Looking at the acceleration spectra in
figure 7.6, a lot of overlap is present. In particular, the IR Laser measurement from
sensor 1z clearly intersects with the Reference data from sensors 2x and 3x in the high
frequency range inbetween 7 and 10 kHz. This overlap is reduced when looking at the
virtual force spectra in figure 7.7.
The visual frequency-domain considerations conducted in the present section are merely
intended to enable comprehensibility of the virtual force approach. The quantitative
evaluation of this new approach takes place in section 8.1. There, the virtual force
frequency-domain data is used for feature generation instead of the original acceleration
data to evaluate the transferability of the resulting fault diagnosis model. Now, the
following section 7.2 introduces an additional approach as an alternative to the virtual
force approach.

7.2. Approach 2: Calibration Bearing
In contrast to the hammer-based excitation of Approach 1, Approach 2 aims to use an
actual bearing fault to excite the dynamic forces, the vibration responses of which are
to be determined. For this purpose, a so-called calibration bearing must be prepared
with a well-defined fault. This specifically prepared bearing is used in a separate ex-
perimental run to determine the vibration responses measured from the different sensor
channels’ positions and directions, which were shown in figure 5.6. Although the actual
force excitation remains unknown, it shall be evaluated if these additional acceleration
measurements can be used to calibrate the previously recorded fault diagnosis data in
frequency-domain.

7.2.1. Specification of Fault Geometry
The fault geometry of the calibration bearing has to be well-defined to provide constant
properties of the force excitation for a given operating condition. Ideally, the fault
geometry is reproducible. The calibration bearing is supposed to create a broadband
excitation with a high frequency range. This is intended to be achieved by creating
sharp edges at the artificially prepared bearing fault. For the reasons mentioned above,
a laser-ablation-based fault is selected again here. To ensure a circulating force excitation,
the bearing’s inner race is treated. The measured topography resulting from the laser-
ablation process to the inner race of the calibration bearing is visualized in figure 7.8.
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Figure 7.8.: Measured topography of the calibration bearing fault at its inner race.

In comparison to the previously created IR Laser fault, which was visualized in figure
5.9, the present fault of the calibration bearing is considerably larger in its dimensions.
Assuming idealized kinematics for a ball passing through this fault inside the bearings
load zone, the ball would be subject to a radial movement of up to 7.4 µm.

7.2.2. Calibration of Acceleration Spectra
The main calibration idea of Approach 2 is stated in equation (7.3). In an equivalent way
to the virtual force approach (Approach 1), each acceleration measurement is calibrated
by a division in frequency-domain. In contrast to equation (7.2), the denominator is
given by the frequency-domain acceleration from the calibration bearing experiment
Ac instead of the accelerance H. Thus, the calibrated acceleration C is calculated as
another basis for feature generation to compare against the original acceleration A and
the virtual force V .

C(f) =
A(f)

Ac(f)
(7.3)

To measure the calibration acceleration data ac, the prepared calibration bearing is
installed into the e-machine and run within an experiment in a similar way to the
bearing fault experiments presented in section 5.4. However, after 5 hours of run-in at
an inner ring speed of 3500 rpm, the speed is reduced for the actual data acquisition.
With respect to the rotational speed during the calibration measurement, the following
hypothesis is formulated:

Hypothesis: Assuming that all measurement data is calibrated using the same
rotational speed of the calibration bearing, the proposed calibration approach works
independently of this speed’s specific value.
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To test this hypothesis within reasonable boundaries, measurements are taken with the
calibration bearing running at three rotational speed levels in the following order within
a single experimental run:

• fi = 2000 rpm

• fi = 1500 rpm

• fi = 1000 rpm

The specified speeds are approached seamlessly after the run-in phase. Each speed is
kept for 10 minutes, with the last 300 seconds being used to acquire the respective
calibration data.
To illustrate the effect of the calibration, figure 7.9 shows exemplary calibrated accel-
erations in a similar manner to the visualizations of the original accelerations and the
virtual forces already presented in figures 7.6 and 7.7.
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Figure 7.9.: Exemplary calibrated acceleration frequency-domain spectra; with calibration
bearing at fi = 2000 rpm.

As depicted, the dimensionless calibrated acceleration allows the IR Laser fault and
Reference bearings to be well separable from each other from a visual point of view.
However, it can be observed that there are still some deviations inbetween the different
sensor channel measurements. If Approach 2 showed perfect results, the blue lines
representing different sensor channels for the Reference bearing would equal each other.
In the same way, all orange lines representing the IR Laser fault would match exactly.
Since this is not the case, the performance of the given approach is analysed in more
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detail in section 8.1. Additionally, the previously proposed hypothesis regarding the
influence of the calibration bearing’s rotational speed is investigated in section 8.2.
With the two novel approaches for the calibration of acceleration data presented in
sections 7.1 and 7.2, Research Question 2 is now addressed. Building upon this, the
next chapter 8 evaluates these novel approaches using the 2D transfer scenario.
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8. Transferability Evaluation of the
Extended Approaches

Based on chapter 6, which analysed the transferability of a fault diagnosis model using
acceleration data, two novel approaches were presented in chapter 7 to enhance trans-
ferability. Now, with the goal of answering Research Question 3, the present chapter
evaluates these two newly proposed approaches in comparison to the current state of
research. To enable an objective comparison, the framework depicted in figure 8.1 is
utilized.

Baseline: Acceleration 

Bearing Fault Data

• 5 bearings

• 2 experimental series

• 9 sensor channels

700 Features: FB50_FD

• Processing method: Frequency band separation with

• 14 frequency-domain feature formulas: to 

Approach 1: Virtual Forces 

using FRF Data

• Using 9 measured 

accelerances

Approach 2: Calibrated 

Acceleration using 

Calibration Bearing Data

• Using 9 calibration spectra

• Choosing from 3 different 

inner ring speeds at 

calibration experiment

Results: Accuracy Distributions and Confusion Matrices

ML Pipeline: 2D Transfer Scenario

• 4 ML algorithms with optimized hyperparameters: k-NN, RF, ANN and SVM

Figure 8.1.: Framework for generation of final results.

In addition to the baseline acceleration data, the processing steps introduced as part of
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Approach 1 and Approach 2 are applied to generate the virtual forces and the calibrated
accelerations, respectively. Afterwards, feature generation and ML are performed ac-
cording to the 2D scenario, as already used for the acceleration-based transferability
evaluation in section 6.5. The final results are evaluated by making use of the cross-
validation-based accuracy distributions and their mean values, as well as confusion ma-
trices.
Next, section 8.1 presents the final results of the two newly proposed approaches in
comparison to the baseline acceleration-based approach. Afterwards, the hypothesis
regarding the influence of the rotational speed for Approach 2 is addressed in section 8.2.

8.1. Comparison of Results
To enable an objective result comparison, the framework illustrated in figure 8.1 is
utilized. The final, comparitive accuracy distributions can be obtained in figure 8.2. For
now, Approach 2 is evaluated based on the fi = 2000 rpm calibration data.

Acceleration A Virtual force V Calibrated acceleration C
Approach

40

50

60

70

80

90

100

A
cc

ur
ac

y
in

%

ML algorithm
k-NN
RF
ANN
SVM

Figure 8.2.: Box plot of predictive accuracies comparing the different approaches using the
2D scenario; with FB50_FD feature set and optimized hyperparameters; with
calibrated acceleration C based on the fi = 2000 rpm calibration data.

Here, the box plot is generated in the same manner as already explained in the context
of figure 6.19. In addition to the presented accuracy distributions, table 8.1 provides
the corresponding mean accuracy values to facilitate the comparison through the use of
single numerical values.
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Table 8.1.: Mean accuracy comparison between the different approaches using the 2D sce-
nario; with FB50_FD feature set and optimized hyperparameters; with cali-
brated acceleration C based on the fi = 2000 rpm calibration data.

Mean accuracies

ML algorithm Acceleration A Virtual force V Calibrated
acceleration C

k-NN 81.6 % 87.2 % 95.2 %

RF 73.4 % 81.9 % 87.6 %

ANN 73.7 % 82.9 % 94.7 %

SVM 78.6 % 85.3 % 95.2 %

To enable an indepth analysis of the results, two natural boundaries of expectable accu-
racy results shall be mentioned briefly. First, the natural upper limit of the accuracy,
which only a perfectly predicting model would reach, is 100 %. Second, a natural lower
bound for reasonable accuracies is given by the predictive accuracy of a dummy, un-
informed model, which has to randomly guess its predictions. For the given case of
an evenly balanced 5-class classification, the expected value of the random guess-based
accuracy equals 20 %.
With this in mind, figure 8.2 shows that the baseline acceleration-based approach per-
forms with a wide dispersion of accuracies covering a large proportion within the afore-
mentioned boundaries. Accordingly, the individual accuracies are highly dependent on
the particular sensor channels used for training within the cross-validation procedure.
On average, the mean accuracies, depending on the ML algorithm, are located in the
range of 73.4 % to 81.6 %. Thus, 18.4 to 26.6 % of the predictions are wrong in total
for the baseline approach.
Looking at the virtual force-based results coming from Approach 1, the mean accuracies
are increased. The overall proportion of wrong predictions is reduced to the range of
12.8 to 18.1 %. Furthermore, with the calibration bearing Approach 2, this proportion is
reduced even further, reaching 4.8 to 12.4 %. Thus, it can be seen that both of the novel
approaches provide improved transferability compared to the current state of research.
In particular, Approach 2 performs superior.
Comparing the different ML algorithms, the results deviate slightly from each other. In
particular, for the virtual force and calibrated acceleration approaches, the RF shows
lower performances. In comparison, overall high accuracies are observed using the k-NN
and SVM algorithms.
The now following paragraphs go into more detail to analyze the proportions of incor-
rectly predicted classes. For this purpose, the confusion matrices of Approaches 1 and 2
are shown in figures 8.3 and 8.4, using the SVM-based results. The corresponding con-
fusion matrix of the baseline acceleration-based results was already presented in figure
6.22 and can be considered as a reference here.
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Figure 8.3.: Confusion matrix for the 2D scenario using Approach 1: Virtual forces; with
FB50_FD feature set and hyperparameter-optimized SVM classifier.

For each bearing class, 43200 predictions are made on the testing data. Comparing the
different bearing classes, the Corrosion fault is detected most accurately. This obser-
vation is consistent with the results already observed in figure 6.22 using the baseline
acceleration data. Since the prepared Corrosion fault was already analysed in section
6.1 to be a strongly pronounced fault in comparison to the remaining 3 faults, this more
reliable identifiability is plausible. For the virtual force approach, the largest propor-
tions of misclassifications are allocated inbetween the Brinell and the Corrosion faults.
Additionally, there is an increased amount of confusion among the 3 classes of IR Laser
fault, OR Laser fault and Reference bearing.
Moving on to the confusion matrix in figure 8.4 to evaluate Approach 2, the observed
missclassification rates are much lower compared to Approach 1. In particular, the
Brinell, Corrosion and IR Laser faults are detected very reliably. Only some wrong
predictions are made inbetween the OR Laser fault, the IR Laser fault and the Reference
bearing. As already shown in section 6.1, both IR Laser and OR Laser faults are only
slightly pronounced. Thus, for real-world applications, these misclassifications would be
rather acceptable in comparison to misclassifications of the more ponounced Corrosion
and Brinell faults.
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Figure 8.4.: Confusion matrix for the 2D scenario using Approach 2: Calibrated acceleration;
based on the fi = 2000 rpm calibration data; with FB50_FD feature set and
hyperparameter-optimized SVM classifier.

The results presented here provide the foundation for answering Research Question 3.
However, for an indepth discussion of these results, please refer to chapter 9. Next,
section 8.2 addresses the influence of the rotational speed during the calibration experi-
ment.

8.2. Influence Investigation of the Rotational Speed for
Approach 2

In section 7.2.2, the hypothesis was proposed that Approach 2 works independently of
the inner ring rotational speed fi during measurement of the calibration data. To test
this hypothesis on a limited scale, data was acquired from three different speeds (1000,
1500 and 2000 rpm). It is worth emphasizing that none of these speeds matches the
speed of 3500 rpm which was used to generate the bearing fault data in chapter 5.
To check for influence of the different rotational speeds, the framework presented in
figure 8.1 is used again. The resulting accuracy distributions for the different inner ring
speeds are visualized in figure 8.5.
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Figure 8.5.: Box plot of predictive accuracies comparing different calibration bearing inner
ring speeds using Approach 2 in the 2D scenario; with FB50_FD feature set
and optimized hyperparameters.

Slight trends of the accuracy distributions in correlation to the inner ring speed fi can
be discerned. However, the directions of the trends are not uniform when comparing
the individual ML algorithms. Reducing the distributions from figure 8.5 to single
representative values, table 8.2 presents the corresponding mean values of the predictive
accuracies.

Table 8.2.: Mean accuracy comparison between the different calibration bearing inner ring
speeds using Approach 2 in the 2D scenario; with FB50_FD feature set and
optimized hyperparameters.

Mean accuracies

ML algorithm 1000 rpm 1500 rpm 2000 rpm

k-NN 95.3 % 94.5 % 95.2 %

RF 92.1 % 88.4 % 87.6 %

ANN 92.3 % 94.2 % 94.7 %

SVM 94.8 % 94.3 % 95.2 %

The mean values clarify that there is no uniform accuracy-trend depending on the ro-
tational speed. Minor variations of the predictive performance may be attributed to
uncertainties inherent in the measurements. One additional reason for the deviations
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may be given by non-linear system behavior. When operating the calibration bearing, a
higher rotational speed leads to more powerful vibrations. In the presence of non-linear
effects, this could cause fluctuations in performance of the calibration approach. How-
ever, considering both the accuracy distributions and their mean values, it is concluded
that the influence of the rotational speed on the performance of Approach 2 is negligible.
Thus, the hypothesis is considered to be verified within the scale of rotational speeds
presented here.
Given these results, the next chapter 9 discusses the findings with respect to the initially
formulated Research Questions. Furthermore, the viability of the proposed methods in
an industrial environment is discussed.
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9. Discussion
Based upon the results already presented in chapters 6 to 8, the investigated approaches
and their implementations are to be discussed within the present chapter. Firstly, the
benchmark acceleration-based approach and its performance is analyzed to compare the
different transfer scenarios, which were introduced in the context of figure 6.15:

• 0D scenario: Training and testing on the same experimental series and unchanged
sensor channels leads to very high predictive accuracies. For this 0D scenario,
figure 6.18 presents mean accuracies of 100 % for almost all feature sets within
investigation. This can be attributed to the feature distributions being nearly
identical for both training and testing data. However, since both training and
testing data are taken from the same experimental runs, these high prediction
accuracies cannot be expected to be representative for real industrial applications.

• 1D-E scenario: Training and testing on completely separate experimental series
makes the 1D-E scenario represent a more close-to-reality use case. However, it
makes predictions more difficult in comparison to the 0D scenario. Apparently,
the intermediate disassembly and reassembly of the e-machine in the course of
the test bearing replacements cause differences in the measurement data, which
the algorithm must be able to handle. Using simple time-domain features and
a baseline RF algorithm without its hyperparameters being optimized, a mean
accuracy of only 81 % is achieved. By choosing the best-performing feature set
(FB50_FD) and by optimizing the hyperparameters of multiple ML algorithms,
mean accuracies of around 100 % are reached. However, since the 1D-E scenario is
used for feature and hyperparameter selection, it cannot be completely ruled out
at this point whether the algorithms are overfitted.

• 2D scenario: In addition to using separate experimental runs, the feature and
ML algorithm configurations determined based on the 1D-E scenario are used
to perform predictions based on testing data which is recorded from a different
sensor channel. Thus, training and testing data correspond to different structural
dynamic behaviors. With the acceleration-based approach in the 2D scenario,
only 73.4 to 81.6 % mean accuracy is reached, with slight deviations depending on
the ML algorithm in use. Accordingly, the mean accuracy is reduced by at least
18.4 % in comparison to the 1D-E scenario. As part of the implemented cross-
validation procedures, it is observed that the signal properties and the resulting
predictive accuracies are highly dependent on the positioning of the vibration-
sensing accelerometers. With respect to the accuracy distributions presented in
figure 6.20, it is concluded that the transfer of conventional, acceleration-based
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ML models to systems with differing structural dynamics leads to a significant
loss in predictive performance and is therefore not recommended for real-world
applications. This concludes Research Question 1.

Building on the above mentioned results, Research Question 2 is raised to develop novel
conceptual approaches in order to increase the models’ transferabilities to systems with
differing structural dynamics. This is answered within chapter 7 by introducing two
novel approaches, both of which making use of an additionally introduced calibration
step. The following key points briefly summarize the two novel approaches and their
performances in the 2D scenario from chapter 8:

• Approach 1: Virtual forces: By using measurements of the FRFs in terms of their
accelerances, so-called virtual forces are calculated from the original acceleration
data. Using the same feature and hyperparameter configurations as resulted from
the acceleration-based baseline approach in the 1D-E scenario, the transferabil-
ity of this new approach is evaluated. With the 2D scenario, in comparison to
the baseline acceleration-based approach, a performance improvement is achieved,
reaching mean accuracies inbetween 81.9 and 87.2 %.

• Approach 2: Calibration bearing: In contrast to the FRF measurements, Ap-
proach 2 uses a dedicated experimental run with a distinctly prepared calibration
bearing. Frequency-domain division enables the calculation of calibrated acceler-
ation spectra, which are again used with the same feature and hyperparameter
configurations from the previous approaches to allow for an unbiased compari-
son. Compared to Approach 1, the predictive performance for Approach 2 is even
higher and achieves mean accuracies of 87.6 to 95.2 %. In contrast to the previous
approaches, the more severe faults (Corrosion and Brinell) are diagnosed almost
perfectly here. Only the less pronounced faults (IR Laser and OR Laser) as well
as the Reference bearing are confused to a small extend. This confirmes the good
performance of Approach 2.

With reference to figure 8.2 and table 8.1, a quantitative answer to Research Question 3 is
provided. Besides the differences in predictive performance, both of the newly proposed
approaches vary with respect to their practicability. Approach 1, which comes with some
disadvantages regarding its implementation, is therefore first discussed in terms of its
feasibility:

• The execution of FRF measurements requires special measuring equipment and
additional technical knowledge on structural dynamics. This limits the widespread
practicability of Approach 1.

• For the present e-machine-based investigations, the severely restricted space at the
bearing location prevents the excitation force from being applied in the desired
manner. Therefore, a reciprocal measurement is performed by fitting accelerom-
eters inside the bearing. The suitability of this reciprocal measurement for the
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given case is based on the assumption of a linear system behavior, which cannot
be guaranteed. For machines with smaller bearings, the installation space for sen-
sor placement may be even more limited, which could prevent even the reciprocal
measurement technique.

• The reciprocal FRF measurement can only be realized with respect to discrete
locations inside the bearing. However, the true excitation is circumferential for
inner race, rolling element and cage faults due to their movements during operation,
and not localizable in advance for outer ring faults. Randall already described
the underlying problem in the following way: ”Where the fault is moving, the
transfer function of the transmission path varies with respect to the fixed positions
of response transducers.” [13, p.47]

For the reasons mentioned above, the transmission paths measured in section 7.1 are
not expected to exactly equal the transmission paths corresponding to the fault-exited
structure-borne sound propagation during e-machine operation. Thus, the mediocre
predictive accuracies of Approach 1 in the 2D scenario-based transferability evaluation
seem to be reasonable.
Approach 2 avoids the disadvantages coming with the impulse hammer-based FRF mea-
surements by making use of a real bearing fault excitation and the corresponding re-
sponse measurements. However, the implementation realized here shall also be critically
assessed:

• The bearing fault-based, circumferentially distributed force excitation is expected
to be more realistic in comparison to the hammer-based FRF measurements. How-
ever, the actual level of excitation forces remains unknown. In contrast to the
virtual forces, which represent a physical quantity, the calibrated acceleration
therefore lacks a directly interpretable meaning.

• For the present case, only one single calibration experiment is performed and used
to calibrate all sensor channels. This neglects the additional measurement fluctu-
ations which may occur from intermediate removal of the calibration bearing. A
more sophisticated approach would use a single experimental run of the calibration
bearing for each individual sensor channel, with removal and installation of the
calibration bearing between each experimental run to incorporate uncertainties
introduced during e-machine reassembly. This is not implemented in the present
work due to the substantial additional effort involved. However, in the case of
a model transfer between two machines with differing structural dynamics, these
additional experiments would have to be carried out. Thus, the validation of the
results presented here is still pending.

Initially, the overarching aim of the present research was stated to advance the transfer-
ability of data-driven models for bearing fault diagnosis. Based on the specified research
gap, this aim was narrowed to focus on the transferability of vibration-based fault diag-
nosis models from one system to a system with differing structural dynamics. Based on
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experimental data, which was acquired from an e-machine test bench, the transferability
of different models for bearing fault diagnosis was evaluated by utilizing measurement
data from different sensor positions. Based on the discussion of the results presented
within the current chapter, the following, final chapter 10 concludes the contribution of
this work to the state of research and, building upon that, identifies opportunities for
future research.
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10. Conclusion and Outlook
Condition monitoring and fault diagnosis are fundamental to the implementation of
condition-based maintenance. By making use of ML algorithms, fault diagnosis can be
provided in an automated way. In the automotive industry, rising levels of automated
driving and an increasing number of fleet vehicles cause high demands on the safety and
reliability of automotive subsystems. To meet these demands, implementing reliable and
automatic diagnosis of upcoming faults is a promising solution. However, to enable ML-
based fault diagnosis of a particular system, a data-driven model has to be trained on
extensive data sets. The acquisition of this data requires a considerable amount of time
and expense. By enabling models to be reusable, these hurdles in terms of high expense
would be reduced significantly. Thus, the transferability of fault diagnosis models would
enable condition-based maintenance to be profitable for many new applications.
Driven by the aforementioned reasons, the present research contributed to the state
of research by enhancing the transferability of vibration-based, data-driven models. In
particular, this work focused on enabling the models’ transferability to technical systems
with differing structural dynamic behaviors. Acceleration data was acquired from an
e-machine test bench at various positions to verify the proposed methods. Multiple
ball bearings with healthy and faulty conditions were prepared to run within several
experimental runs. Thus, a classification task was set up to evaluate the transferability
of different model generation approaches.
The investigations started by using models trained on acceleration data. It was found
that training and testing on completely separate experimental series, which represents
a realistic scenario, is a considerably more difficult task for fault diagnosis than train-
ing and testing on the same experimental runs, as it is frequently carried out within
past literature. Within a comparative analysis of different feature engineering methods,
frequency-domain features calculated on a high number of separated frequency bands
resulted in the most accurate fault classifications.
In addition to transferring the fault diagnosis models to a different experimental series,
a transfer to different sensor positions was introduced. Here, the various sensor positions
are accompanied by different vibration transmission paths, representing varying struc-
tural dynamic behaviors. It was shown that the transfer to varying structural dynamic
behaviors significantly reduced the acceleration-based models’ predictive accuracy.
Two novel approaches were proposed to enhance transferability by incorporating domain
knowledge on structural dynamics. Both approaches make use of additional measure-
ments of the transmission behavior inbetween the location of force excitation at the
bearing and the vibration response at the sensor positions.
On the one hand, Approach 1 uses frequency response measurements to calculate so-
called virtual forces. Calculating features based on these virtual forces in an equivalent
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way as previously with the original acceleration data, the virtual force-based fault di-
agnosis models allow for improved predictive accuracies when transferred to a different
sensor position. However, due to space constraints, this approach comes with some
challenges regarding the implementation of frequency response measurements.
On the other hand, Approach 2 calibrates the acceleration signals by using an additional,
specifically prepared bearing fault to measure the sensor positions’ differences in accel-
eration response. This calibration bearing approach can outperform the virtual force
approach in terms of its transferability. Accordingly, Approach 2 is considered to be
preferable to Approach 1 for industrial applications.
As part of the final performance evaluations using the transfer scenario to different sensor
positions, the following predictive performances are achieved with the SVM as a repre-
sentative ML algorithm: Whereas the baseline acceleration-based approach results in a
mean accuracy of only 78.6 %, Approach 1 causes a raise to 85.3 %, and Approach 2 en-
ables mean accuracies of even 95.2 %. Accordingly, the superior performing Approach 2
enables a reduction of the misclassification rate by more than 3/4 for the presented
investigations.
In conclusion, Approach 2 is recommended for enhancing the transferability of a given
fault diagnosis model to a new technical system with differing structural dynamics. Thus,
improved fault diagnosis functionality can be provided without the necessity of addi-
tional a priori training data. Although the validation of the presented approaches is still
pending, this thesis’ contribution to the state of research is expected to improve rapid
and cost-effective deployments of automated fault diagnosis for implementing condition-
based maintenance on new systems. This can bring benefits not least to e-machine
applications for future vehicles.

Within future research, transferable ML approaches for fault diagnosis should be further
expanded. In particular, the presented approaches could be validated using the transfer
between different machines instead of different sensor positions. To further improve the
transferability of fault diagnosis models to systems with differing structural dynamics,
additional techniques for implementing the proposed calibration step should be examined.
For example, within Approach 1, the FRFs could be determined by simulating the
structural dynamics of the system instead of measuring them. Furthermore, non-linear
modeling of the frequency response may help to improve the transferability of the fault
diagnosis model.
Additionally, since the present work focuses on the impact of differing structural dy-
namics in an isolated way, the presented approach for handling differences in structural
dynamics should be combined with approaches for handling varying operating conditions
and measurement chains. Furthermore, the influence of different bearing types and sizes
on the measurement data should be investigated and integrated into the modeling. Thus,
an overall approach for transfering vibration-based fault diagnosis models to different
technical systems in general may be developed.
Within the presented research, the ML modeling was based on explicitly designed feature
sets. For future research on larger data sets, this feature generation could be replaced by
incorporating Deep Learning techniques such as Deep Convolutional Neural Networks,
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which are suitable for processing the raw data directly. Moreover, the classification task
used within this work can be extended to diagnose a greater variety of failure modes and
their degrees of severity. This can for example be accomplished by utilizing regression
models.
The present work deals with the diagnosis of faults in order to enable non-predictive,
condition-based maintenance. Building on this, future work could additionally incorpo-
rate a model of future degradation. By adding this prognostic step, a transferable model
for predictive maintenance planning could be developed.
In addition to monitoring the faults of rolling bearings, future investigations could apply
the proposed approaches to different tribological systems such as gears. Since gear
faults can also be detected by vibration monitoring, the approaches used for bearing
fault diagnosis should be applicable in a similar way.
Furthermore, future research could work on applying the presented transferability ap-
proaches to different measurement principles in an analogous way. Thus, instead of
using Vibration Monitoring, continuing research could additionally focus on principles
such as Acoustic Emission, Electrical Currents, or Electrical Impedances. Overall, the
performance of the fault diagnosis and the transferability of models relying on different
measurement principles should be assessed comparatively.
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A. Convolution Theorem
Proof. In accordance with [13, p.79], it is to be shown that if

r(t) = s(t) ∗ u(t) (A.1)
that is

r(t) =

∫ ∞

−∞
s(τ)u(t− τ) dτ (A.2)

then

R(f) = S(f) · U(f) (A.3)
where the upper case signals are the Fourier transforms of the lower case signals.

R(f) =

∫ ∞

−∞
r(t)e−j2πft dt (A.4)

S(f) =

∫ ∞

−∞
s(t)e−j2πft dt (A.5)

U(f) =

∫ ∞

−∞
u(t)e−j2πft dt (A.6)

Substituting (A.2) in (A.4) gives

R(f) =

∫ ∞

−∞

[∫ ∞

−∞
s(τ)u(t− τ) dτ

]
e−j2πft dt (A.7)

which by reversing the order of integration yields

R(f) =

∫ ∞

−∞
s(τ)

[∫ ∞

−∞
u(t− τ)e−j2πft dt

]
dτ

=

∫ ∞

−∞
s(τ)

[∫ ∞

−∞
u(z)e−j2πf(z+τ) dz

]
dτ

=

∫ ∞

−∞
s(τ)

[∫ ∞

−∞
u(z)e−j2πfz dz

]
e−j2πfτ dτ

R(f) = S(f) · U(f).

(A.8)

QED
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B. Test Bench and Software
Specifications

Table B.1.: Technical characteristics of the PMSM; according to [89].
Nominal power 60 kW

Maximum power 90 kW

Nominal torque 95 Nm

Maximum torque 200 Nm

Maximum speed 12800 rpm

Voltage up to 430 VDC

Shaft DIN 5480-N 26 × 1.25 × 18 × 9H

Bolt hole diameter 245 mm

Length 239 mm

Weight 30 kg

Protection class IP67, IP6k9k

Cooling Water-glycol mixture Si-OAT 50:50, 6-8 l/min

Ambient temperature −40 … + 85 °C

CE conformity Low Voltage Directive 2014/35/EU RoHS 2011/65/EU

Table B.2.: Geometric properties of the type 6207 deep groove ball bearing.
dB dP NB ϕ

11.1 mm 53.5 mm 9 13 °
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Table B.3.: Software versions in use for data processing.
Software Version

ArtemiS SUITE 14.2

Python 3.10.13

numpy 1.23.5

pandas 2.0.0

scipy 1.10.1

matplotlib 3.7.1

scikit-learn 1.2.2

hyperopt 0.2.7
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C. Additional Exemplary Data
Visualizations

Figure C.1.: CWT for Brinell fault from experimental series A at channel 2x.

Figure C.2.: CWT for Corrosion fault from experimental series A at channel 2x.
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Figure C.3.: CWT for Reference bearing from experimental series A at channel 2x.
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Figure C.4.: Time-domain data from experimental series A at channel 1x.
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Figure C.5.: Time-domain data from experimental series A at channel 1y.
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Figure C.6.: Time-domain data from experimental series A at channel 1z.
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Figure C.7.: Time-domain data from experimental series A at channel 2x.
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Figure C.8.: Time-domain data from experimental series A at channel 2y.
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Figure C.9.: Time-domain data from experimental series A at channel 2z.
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Figure C.10.: Time-domain data from experimental series A at channel 3x.
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Figure C.11.: Time-domain data from experimental series A at channel 3y.

114



C. Additional Exemplary Data Visualizations

−20

0

20

A
cc

el
er

at
io

n
a

in
m s2

Brinell

−25

0

25

50

A
cc

el
er

at
io

n
a

in
m s2

Corrosion

0

10

A
cc

el
er

at
io

n
a

in
m s2

IR Laser

−10

0

10

A
cc

el
er

at
io

n
a

in
m s2

OR Laser

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040

Time t in s

−5

0

5

A
cc

el
er

at
io

n
a

in
m s2

Reference

Figure C.12.: Time-domain data from experimental series A at channel 3z.
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D. Supplementary ML Results

D. Supplementary ML Results

Table D.1.: Mean accuracy comparison between the different feature sets; with baseline RF.
Mean accuracies

Feature set 0D scenario 1D-E scenario 2D scenario

RAW_TD 99.5 % 81.0 % 45.7 %

RAW_FD 100.0 % 89.3 % 57.5 %

RAW_Lei 100.0 % 91.1 % 57.7 %

RAW_all 100.0 % 89.3 % 55.1 %

ENV_Lei 100.0 % 86.2 % 48.9 %

ENV_all 100.0 % 86.9 % 49.0 %

FB4_FD 100.0 % 86.0 % 62.7 %

FB10_FD 100.0 % 88.0 % 61.6 %

FB25_FD 100.0 % 94.6 % 66.4 %

FB50_FD 100.0 % 99.3 % 69.3 %

FB50_FD-mean 100.0 % 80.9 % 58.5 %

FB100_FD-mean 100.0 % 90.8 % 60.7 %

FB250_FD-mean 100.0 % 97.8 % 63.4 %

FB500_FD-mean 100.0 % 97.0 % 64.4 %
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k − Number of neighbors of the k-NN algorithm

L − Loss function

M − Length of a discrete frequency-domain signal

N − Length of a discrete time-domain signal

NB − Number of balls
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Symbol Unit Description

NC − Number of different bearings for classification

ND − Number of data samples

NFB − Number of frequency bands

NS − Number of sensor channels

P − Marginal distribution

qw − Amplitude correction factor for windowing

r varies Time-domain signal

R varies Frequency-domain signal

s varies Time-domain signal

s̃ varies Smoothed time-domain signal

S varies Frequency-domain signal

Sds varies Double-sided spectrum of a signal

sH varies Hilbert transformed time-domain signal

t s Time

Ti − Time-domain features

u varies Time-domain signal

U varies Frequency-domain signal

v N Virtual force in time-domain

V N Virtual force in frequency-domain

w − Windowing function

W − Wavelet transformed signal
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Symbols

Symbol Unit Description

x − Feature

x̃ − Standardized feature

x − Feature vector

X − Feature set

Xs − Feature set on source domain

X t − Feature set on target domain

X − Feature space

y − Label

ypred − Predicted label

Y − Label set

Y − Label space

Ys − Label space on source domain

Y t − Label space on target domain

z varies Hilbert analytic signal in time-domain

za varies Hilbert-based instantaneous amplitude in time-domain

Za varies Hilbert-based instantaneous amplitude in frequency-
domain

BPFI Hz Ball pass frequency, inner race

BPFO Hz Ball pass frequency, outer race

BSF Hz Ball (roller) spin frequency

FTF Hz Fundamental train (cage) frequency
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Symbols

Symbol Unit Description

θ − Hyperparameter configuration

θ⋆ − Optimal hyperparameter configuration

Θ − Hyperparameter space

µ varies Mean

σ varies Standard deviation

τ s Temporal delta

ϕ ° Contact angle

ψ − Mother wavelet

ψ∗ − Complex conjugate of the mother wavelet
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