TU Darmstadt / ULB / TUprints

Word Sense Alignment of Lexical Resources

Matuschek, Michael (2015)
Word Sense Alignment of Lexical Resources.
Technische Universität Darmstadt
Ph.D. Thesis, Primary publication

[img]
Preview
Text
PhD_MiM_2015.pdf
Copyright Information: CC BY-NC-ND 3.0 Unported - Creative Commons, Attribution, NonCommercial, NoDerivs.

Download (9MB) | Preview
Item Type: Ph.D. Thesis
Type of entry: Primary publication
Title: Word Sense Alignment of Lexical Resources
Language: English
Referees: Gurevych, Prof. Dr. Iryna ; Navigli, PhD Roberto ; Weihe, Prof. Dr. Karsten
Date: 2015
Place of Publication: Darmstadt
Date of oral examination: 29 September 2014
Corresponding Links:
Abstract:

Lexical-semantic resources (LSRs) are a cornerstone for many areas of Natural Language Processing (NLP) such as word sense disambiguation or information extraction. LSRs exist in many varieties, focusing on different information types and languages, or being constructed according to different paradigms. However, the large number of different LSRs is still not able to meet the growing demand for large-scale resources for different languages and application purposes. Thus, the orchestrated usage of different LSRs is necessary in order to cover more words and senses, and also to have access to a richer knowledge representation when word senses are covered in more than one resource. In this thesis, we address the task of finding equivalent senses in these resources, which is known as \emph{Word Sense Alignment} (WSA), and report various contributions to this area.

First, we give a formal definition of WSA and describe suitable evaluation metrics and baselines for this task. Then, we position WSA in the broad area of semantic processing by comparing it to related tasks from NLP and other fields, establishing that WSA indeed displays a unique set of properties and challenges which need to be addressed.

After that, we discuss the resources we employ for WSA, distinguishing between expert-built and collaboratively constructed resources. We give a brief description and refer to related work for each resource, and we discuss the collaboratively constructed, multilingual resource OmegaWiki in greater detail, as it has not been exhaustively covered in previous work and also presents a unique, concept-centered and language-agnostic structure, which makes it interesting for NLP applications. At the same time, we shed light on disadvantages of this approach and gaps in OmegaWiki's content. After the presentation of the resources, we perform a comparative analysis of them which focuses on their suitability for different approaches to WSA. In particular, we analyze their glosses as well as their structure and point out flaws and differences between them. Based on this, we motivate the selection of resource pairs we investigate and describe the WSA gold standard datasets they participate in. On top of the ones presented in previous work, we discuss four new datasets we created, filling gaps in the body of WSA research.

We then go on to present an alignment between Wiktionary and OmegaWiki, using a similarity-based framework. For the first time, it is applied to two collaboratively constructed resources. We improve this framework by adding a machine translation component, which we use to align WordNet and the German part of OmegaWiki. A cross-validation experiment with the English OmegaWiki (i.e. for the monolingual case) shows that both configurations perform comparably as only few errors are introduced by the translation component. This confirms the general validity of the idea.

Building on the observation that similarity-based approaches suffer from the insufficient lexical overlap between different glosses, we also present the novel alignment algorithm Dijkstra-WSA. It works on graph representations of LSRs induced, for instance, by semantic relations or links, and exploits the intuition that related senses are concentrated in adjacent regions of the resources. This algorithm performs competitively on six out of eight evaluation datasets, and we also present a combination with the similarity-based approach mentioned above in a backoff configuration. This approach achieves a significant improvement over previous work on all considered datasets.

To further exploit the insight that text similarity-based and graph-based approaches complement each other, we also combine these notions in a machine learning framework. This way, we achieve a further overall improvement in terms of F-measure for four out of eight considered datasets, while for three others we could achieve a significant improvement in alignment precision and accuracy. We investigate different machine learning classifiers and conclude that Bayesian Networks show the most robust results across datasets. While we also discuss additional machine learning features, none of these lead to further improvements, which we consider proof that structure and glosses of the LSRs are sufficiently informative for finding equivalent senses in LSRs. Moreover, we discuss different approaches to aligning more than two resources at once (N-way alignment), which however do not yield satisfactory results. We also analyze the reasons for that and identify a great demand for future research.

The unified LSR UBY provides the greater context for this thesis. Its representation format UBY-LMF (based on the \emph{Lexical Markup Framework} standard) reflects the structure and content of many different LSRs with the greatest possible level of accuracy, making them interoperable and accessible. We demonstrate how the standardization is operationalized, where OmegaWiki serves as a showcase for presenting the properties of UBY-LMF, including the representation of the sense alignments. We also discuss the final, instantiated resource UBY, as well as the Java-based API, which allows easy programmatic access to it, a web interface for conveniently browsing UBY's contents, and the alignment framework we used for our experiments, whose implementation was enabled by the standardization efforts and the API.

To demonstrate that sense alignments are indeed beneficial for NLP, we discuss different applications which make use of them. The clustering of fine-grained GermaNet and WordNet senses by exploiting 1:n alignments to OmegaWiki, Wiktionary and Wikipedia significantly improves word sense disambiguation accuracy on standard evaluation datasets for German and English, while this approach is language-independent and does not require external knowledge or resource-specific feature engineering. The second scenario is computer-aided translation. We argue that the multilingual resources OmegaWiki and Wiktionary can be a useful source of knowledge, and especially translations, for this kind of applications. In this context, we also further discuss the results of the alignment we produce between them, and we give examples of the additional knowledge that becomes available through their combined usage.

Finally, we point out many directions for future work, not only for WSA, but also for the design of aligned resources such as UBY and the applications that benefit from them.

Alternative Abstract:
Alternative AbstractLanguage

Lexikalisch-semantische Ressourcen (LSRs) sind ein Grundbaustein für viele Bereiche des Natural Language Processing (NLP), wie z.B. Lesartendisambiguierung oder Informationsextraktion. Es gibt LSRs in vielen Varianten, mit Schwerpunkten auf verschiedenen Informationstypen und Sprachen. Nichtsdestotrotz kann die große Zahl verschiedener LSRs den wachsenden Bedarf an umfangreichen Ressourcen für verschiedene Sprachen und Anwendungen nur unzureichend decken. Aus diesem Grund ist die kombinierte Nutzung verschiedener LSR nötig, um mehr Wörter und Bedeutungen abzudecken, und auch um Zugriff zu umfangreicherem Wissen zu haben, wenn eine Wortbedeutung in mehreren Ressourcen vertreten ist. In dieser Arbeit adressieren wir die Aufgabenstellung, äquivalente Wortbedeutungen in diesen Ressourcen zu identifizieren. Dies bezeichntet man als Word Sense Alignment (WSA), und wir berichten über zahlreiche Beiträge zu diesem Forschungsfeld.

Zunächst definieren wir WSA und beschreiben mögliche Evaluationsmetriken und Baselines für diese Aufgabe. Danach verorten wir WSA im weiten Feld der semantischen Sprachverarbeitung, indem wir es zu verwandten Problemen in NLP sowie in anderen Bereichen in Bezug setzen. Dabei stellen wir fest, dass WSA einzigartige Anforderungen mit sich bringt, die berücksichtigt werden müssen.

Im Anschluss diskutieren wir die Ressourcen, die wir für WSA einsetzen, und unterscheiden dabei zwischen von Experten erstellten und kollaborativ erstellten Ressourcen. Während wir für die meisten Ressourcen einen kurzen Überblick geben, besprechen wir die kollaborative, mehrsprachige Ressource OmegaWiki ausführlich, da diese in früheren Arbeiten keine umfangreiche Beachtung fand und darüber hinaus eine einmalige, konzeptorientierte und sprachunabhängige Struktur hat, die sie für NLP-Anwendungen interessant macht. Wir weisen jedoch ebenso auf nachteilige Eigenschaften und Lücken in OmegaWiki hin, die daraus resultieren. Nach der Vorstellung der Ressourcen führen wir eine vergleichende Analyse durch, welche sich auf die Eignung verschiedener LSRs für unterschiedliche WSA-Ansätze konzentriert. Dabei analysieren wir insbesondere die Beschreibungen der Wortbedeutungen und die Struktur der Ressourcen, wobei wir Schwächen einzelner Ressourcen sowie Unterschiede zwischen diesen aufarbeiten. Basierend auf dieser Analyse motivieren wir die Auswahl von Ressourcenpaaren, die wir untersuchen. Wir beschreiben ebenso die WSA-Goldstandards bzw. Evaluationsdatensätze, an denen sie beteiligt sind. Neben denen, die bereits in früheren Arbeiten vorgestellt wurden, diskutieren wir auch vier von uns neu erstellte Datensätze.

Danach präsentieren wir ein Alignment zwischen Wiktionary und OmegaWiki, wobei wir auf einem ähnlichkeitsbasierten Ansatz aufbauen, welcher hier erstmals auf zwei kollaborativ erstellte Ressourcen angewendet wird. Wir erweitern diesen Ansatz um eine maschinelle Übersetzungskomponente, welche genutzt wird um WordNet und den deutschen Teil von OmegaWiki zu alignieren. Ein Vergleichsexperiment mit dem englischen OmegaWiki (d.h. für den monolingualen Fall) zeigt, dass beide Konfigurationen vergleichbare Ergebnisse erzielen, da die Übersetzungkomponente nur wenige Fehler macht. Dies bestätigt die Effektivität unseres Ansatzes.

Basierend auf der Beobachtung, dass ähnlichkeitsbasierte Verfahren an ihre Grenzen stoßen, falls die Überlappung zwischen Bedeutungsbeschreibungen unzureichend ist, stellen wir einen neuen Alignment-Algorithmus namens Dijkstra-WSA vor. Erarbeitet auf Graphrepräsentationen der LSRs, die bspw. von semantischen Relationen oder Links induziert werden, und beruht auf der Intuition, dass verwandte Bedeutungen in benachbarten Regionen konzentriert sind. Der Algorithmus zeigt übezeugende Ergebnisse für sechs von acht Evaluationsdatensätzen, und wir präsentieren auch eine Kombination mit dem ähnlichkeitsbasierten Ansatz, welche eine signifikante Verbesserung zu früheren Arbeiten auf allen Datensätzen bewirkt.

Um die Erkenntnis, dass sich ähnlichkeitsbasierte und graphbasierte Verfahren ergänzen, besser auszunutzen, kombinieren wir beide Ansätze auch mit Hilfe von maschinellen Lernverfahren, womit wir eine weitere Verbesserung der Gesamtergebnisse (hinsichtlich F-Measure) für vier von acht Datensätzen erreichen, während wir für drei weitere einen signifikanten Anstieg in Precision und Accuracy feststellen. Wir untersuchen verschiedene maschinelle Lernverfahren, wobei Bayes’sche Netze die beste Gesamtleistung zeigen, und obwohl wir weitere Merkmale für das maschinelle Lernen untersuchen ist keine weitere Verbesserung der Ergebnisse möglich. Wir werten dies als Hinweis, dass die Struktur und die Beschreibungen der Wortbedeutungen ausreichend informativ sind, um äquivalente Bedeutungen in LSRs zu identifizieren. Weiterhin untersuchen wir verschiedene Ansätze, um mehr als zwei Ressourcen gleichzeitig zu alignieren, wobei wir jedoch keine befriedigenden Ergebnisse erzielen. Wir analysieren die Gründe hierfür und identifizieren zahlreiche Ansätze für zukünftige Arbeiten.

Die integrierte Ressource UBY bildet den größeren Rahmen für diese Arbeit. Das zugrunde liegende Repräsentationsformat UBY-LMF (basierend auf dem Lexical Markup Framework -Standard) spiegelt die Struktur und den Inhalt vieler verschiedener LSRs im größtmöglichen Detailgrad wider, wodurch sie interoperabel und besser zugänglich werden. Wir demonstrieren die praktische Anwendbarkeit des Formats anhand von OmegaWiki und präsentieren an diesem Beispiel die wichtigsten Eigenschaften von UBY-LMF, insbesondere die Repräsentation von Alignments. Wir stellen auch die finale, instantiierte Ressource UBY vor, ebenso wie die Java-basierte API, die programmatischen Zugang dazu ermöglicht, ein Web-Interface um die Inhalte von UBY im Browser zu untersuchen und das Alignment-Framework für unsere Experimente, dessen Implementierung durch die Standardisierung und die API erst ermöglicht wurde.

Um zu zeigen, dass WSA tatsächlich nützlich für NLP ist, stellen wir verschiedene Anwendungen vor, die darauf zurückgreifen. Das Clustering feingranularer GermaNet- und WordNet-Bedeutungen durch Ausnutzen von 1:n-Alignments zu OmegaWiki, Wiktionary und Wikipedia führt zu einem signifikanten Anstieg der Genauigkeit von Lesartendisambiguierung auf Standard-Evaluationsdatensätzen für Deutsch und Englisch, wobei dieser Ansatz sprachunabhängig ist und keinen speziellen Anpassungsaufwand für die jeweiligen Ressourcen erfordert. Das zweite Szenario ist computerunterstützte Übersetzung, und wir zeigen, dass mehrsprachige Ressourcen wie OmegaWiki und Wiktionary in diesem Fall nützliche Wissensquellen für zusätzliche Übersetzungen darstellen. In diesem Zusammenhang besprechen wir auch das Alignment zwischen beiden Ressourcen und geben Beispiele für das zusätzliche Wissen, welches durch die kombinierte Nutzung zugänglich wird.

Zuletzt beschreiben wir zahlreiche Ideen für weitere Arbeiten in der Zukunft, nicht nur in Bezug auf WSA, sondern auch für die Konstruktion von verlinkten Ressourcen wie UBY und die Anwendungen, die davon profitieren.

German
Uncontrolled Keywords: Natural Language Processing, Lexical-Semantic Resources, Word Sense Alignment
URN: urn:nbn:de:tuda-tuprints-43555
Classification DDC: 000 Generalities, computers, information > 004 Computer science
400 Language > 400 Language, linguistics
Divisions: 20 Department of Computer Science
20 Department of Computer Science > Ubiquitous Knowledge Processing
Date Deposited: 13 Feb 2015 07:42
Last Modified: 09 Jul 2020 00:52
URI: https://tuprints.ulb.tu-darmstadt.de/id/eprint/4355
PPN: 386760403
Export:
Actions (login required)
View Item View Item