TU Darmstadt / ULB / TUprints

Development of an unstructured Finite Volume Level Set Method in OpenFOAM

Reitzel, Julian (2024)
Development of an unstructured Finite Volume Level Set Method in OpenFOAM.
Technische Universität Darmstadt
doi: 10.26083/tuprints-00023761
Master Thesis, Primary publication, Publisher's Version

[img] Text
Master-Thesis_Julian-Reitzel.pdf
Copyright Information: CC BY-NC-SA 4.0 International - Creative Commons, Attribution NonCommercial, ShareAlike.

Download (16MB)
Item Type: Master Thesis
Type of entry: Primary publication
Title: Development of an unstructured Finite Volume Level Set Method in OpenFOAM
Language: English
Referees: Bothe, Prof. Dr. Dieter ; Maric, Dr.-Ing. Tomislav
Date: 5 March 2024
Place of Publication: Darmstadt
Collation: XI, 102 Seiten
Date of oral examination: 14 June 2023
DOI: 10.26083/tuprints-00023761
Corresponding Links:
Abstract:

This master thesis presents the development and application of a Finite Volume Level Set Method for simulating two-phase flows on unstructured meshes within the OpenFOAM Computational Fluid Dynamics (CFD) framework. The proposed method focuses on incompressible, immiscible, non-reactive, isothermal, two-phase Newtonian fluid flows, considering surface tension forces and gravity. A main objective is to implement and evaluate the Signed Distance Preserving Level Set (SDPLS) method, as proposed by Fricke et al. [17]. Furthermore, the developed Level Set (LS) method is tested with various advection schemes on various mesh types, including hexahedral, perturbed hexahedral, and polyhedral meshes. Lastly, the LS method is coupled to the Navier-Stokes (NS) equations with the Continuum Surface Force (CSF) model proposed by Brackbill et al. [4] and the use of the geometrical phase indicator proposed by us [40], which does not rely on a signed distance property of the LS field. A segregated solver is implemented and validated through numerical studies of the 3D stationary droplet test case.

Alternative Abstract:
Alternative AbstractLanguage

Diese Master Thesis präsentiert die Entwicklung und Anwendung einer Finite Volumen Level Set Methode zur Simulation von Zweiphasenströmungen auf unstrukturierten Gittern innerhalb des OpenFOAM Computational Fluid Dynamics (CFD)-Frameworks. Die vorgeschlagene Methode konzentriert sich auf inkompressible, nicht mischbare, nicht reaktive, isotherme Zweiphasenströmungen mit Newtonscher Fluiden, unter Wirkung von Oberflächenspannungskräften und Schwerkraft. Ein Hauptziel besteht darin, die Signed Distance Preserving Level Set (SDPLS)-Methode von von Fricke et al. [17] zu implementieren und zu untersuchen. Darüber hinaus wird die entwickelte Level Set (LS) Methode mit verschiedenen Advektionsschemata auf verschiedene Gittertypen getestet, einschließlich hexahedrischer, gestörter hexahedrischer und polyedrischer Gitter. Schließlich wird die LS Methode mit den Navier-Stokes (NS) Gleichungen gekoppelt unter Verwendung des Continuum Surface Force (CSF) Modells von Brackbill et al. [4] und des von uns vorgeschlagenen geometrischen Phasenindikators [40], der nicht auf einer vorzeichenbehafteten Distanzeigenschaft des LS Feldes beruht. Ein segregierter Solver wird implementiert und durch numerische Studien des Testfalls stationärer 3D-Tropfen validiert.

German
Uncontrolled Keywords: Computational Fluid Dynamics, Unstructured Finite Volume Method, Two-phase Flow, Level-Set Method, OpenFOAM
Status: Publisher's Version
URN: urn:nbn:de:tuda-tuprints-237611
Additional Information:

[4] J. U. Brackbill, D. B. Kothe, and C. Zemach. “A continuum method for modeling surface tension”. In: Journal of Computational Physics 100.2 (June 1, 1992), pp. 335– 354. doi: 10.1016/0021-9991(92)90240-Y. (Visited on 04/03/2023).

[17] M. Fricke et al. A locally signed-distance preserving level set method (SDPLS) for moving interfaces. Aug. 2, 2022. doi: 10.48550/arXiv.2208.01269. (Visited on 04/03/2023).

[40] T. Marić et al. An second-order accurate geometrical phase indicator for the Level Set method on unstructured meshes. in preparation.

Classification DDC: 500 Science and mathematics > 510 Mathematics
600 Technology, medicine, applied sciences > 620 Engineering and machine engineering
Divisions: 04 Department of Mathematics > Mathematical Modelling and Analysis
Study Areas > Study area Computational Engineering
Date Deposited: 05 Mar 2024 12:29
Last Modified: 06 Mar 2024 13:08
URI: https://tuprints.ulb.tu-darmstadt.de/id/eprint/23761
PPN: 516016202
Export:
Actions (login required)
View Item View Item