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Abstract

This master thesis presents the development and application of a Finite Volume Level Set
Method for simulating two-phase flows on unstructured meshes within the OpenFOAM
Computational Fluid Dynamics (CFD) framework. The proposed method focuses on
incompressible, immiscible, non-reactive, isothermal, two-phase Newtonian fluid flows,
considering surface tension forces and gravity. A main objective is to implement and
evaluate the Signed Distance Preserving Level Set (SDPLS) method, as proposed by Fricke
et al. [17]. Furthermore, the developed Level Set (LS) method is tested with various
advection schemes on various mesh types, including hexahedral, perturbed hexahedral,
and polyhedral meshes. Lastly, the LS method is coupled to the Navier-Stokes (NS)
equations with the Continuum Surface Force (CSF) model proposed by Brackbill et al. [4]
and the use of the geometrical phase indicator proposed by us [40], which does not rely
on a signed distance property of the LS field. A segregated solver is implemented and
validated through numerical studies of the 3D stationary droplet test case.
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Zusammenfassung

Diese Master Thesis präsentiert die Entwicklung und Anwendung einer Finite Volumen
Level Set Methode zur Simulation von Zweiphasenströmungen auf unstrukturierten Git-
tern innerhalb des OpenFOAM Computational Fluid Dynamics (CFD)-Frameworks. Die
vorgeschlagene Methode konzentriert sich auf inkompressible, nicht mischbare, nicht
reaktive, isotherme Zweiphasenströmungen mit Newtonscher Fluiden, unter Wirkung
von Oberflächenspannungskräften und Schwerkraft. Ein Hauptziel besteht darin, die
Signed Distance Preserving Level Set (SDPLS)-Methode von von Fricke et al. [17] zu
implementieren und zu untersuchen. Darüber hinaus wird die entwickelte Level Set
(LS) Methode mit verschiedenen Advektionsschemata auf verschiedene Gittertypen ge-
testet, einschließlich hexahedrischer, gestörter hexahedrischer und polyedrischer Gitter.
Schließlich wird die LS Methode mit den Navier-Stokes (NS) Gleichungen gekoppelt unter
Verwendung des Continuum Surface Force (CSF) Modells von Brackbill et al. [4] und
des von uns vorgeschlagenen geometrischen Phasenindikators [40], der nicht auf einer
vorzeichenbehafteten Distanzeigenschaft des LS Feldes beruht. Ein segregierter Solver
wird implementiert und durch numerische Studien des Testfalls stationärer 3D-Tropfen
validiert.
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1. Introduction

1.1. Motivation

Fluid flows occur in many scenarios in nature and in technical applications. In particular,
understanding and predicting multiphase flows in engineering systems is of great interest
because many engineering flows have more than one phase. The field of multiphase flows
includes

• free surface flows, for example in the marine industry,

• spray and jet flows, for example in combustion engines

• porous media flows, for example in fracking applications in the oil industry,

• surface tension driven flows such as flows in capillary structures for example in
lap-on-a-chip applications,

• wetting flows, for example droplets sliding on a wall,

• dispersion flows, for example in chemical reactors, and

• phase-change flows, for example in flash boilers in thermal process applications.

Numerical methods for the investigation and prediction of flow problems have been in
development since the 1930s. While the simulation of single-phase flows has become state
of the art, the simulation of multi- or two-phase flows is still very challenging. At present,
there is no best approach and the choice depends on the problem, the relevant physics
and the available computing resources. Typically, trade-offs are made between volume
conservation, numerical stability, numerical consistency, order of convergence, handling
of topological interface changes, computational efficiency and ability to handle complex
geometries.
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This work addresses the LS method in the context of the unstructured Finite Volume
Method (FVM). Two-phase flows in this work are restricted to be immiscible, incompress-
ible, isothermal, laminar, non-reactive, without phase change, with surface tension forces,
under gravity influence and consisting of isotropic Newtonian fluids. Although there are
other methods capable of simulating such a two-phase flow problem. The LS has the
advantages of being computationally very efficient, naturally handling topological changes
such as merging or splitting, and easily calculating interface properties such as interface
normal and curvature. The LS method is categorised in comparison to other methods in
section 1.2.

Typically, the FVM is the numerical discretization method of choice in CFD because of its
high volume conservation. Here the unstructured FVM is chosen because it uses unstruc-
tured meshes for domain discretization, which are crucial for engineering applications
where complex geometries are often encountered. The discretization of complex domains
is often not possible or too difficult for structured meshes. In this case mesh generation
algorithms are used, which derive meshes with arbitrarily shaped polyhedral cells from
Computer Aided Design (CAD) models. OpenFOAM is the chosen CFD software framework
for unstructured FVM and is introduced in section 1.3. However, the unstructured Finite
Volume Level Set Method is not without its problems.

• During the advection of the LS field, the LS profile deteriorates. Current techniques
to reinitialize or preserve the LS profile harm the order of convergence, move the
interface, are not mass conservative or are computational inefficient.

• Oscillations arising during the advection of the LS field are typically circumvented by
the use of higher order Weighted Essentially Non-Oscillatory (WENO) schemes. For
unstructured meshes and the use of Adaptive Mesh Refinement (AMR) in outlook,
WENO schemes are computationally inefficient.

• On signed distance relying or inaccurate phase indication leads to parasitic currents
in the flow field near the interface.

Most implementations of the LS method are developed for Cartesian meshes, as the
typically used WENO schemes are complicated for unstructured meshes [44]. This work
provides an implementation of the LS method with the unstructured FVM in OpenFOAM
and tests various advection schemes on different mesh types. Additionally, as Trujillo et al.
[76] states, the effectiveness of the reinitialization depends on the resolution. If the ratio
between the local curvature and the grid spacing is too high, reinitializing the LS profile
is not only compromised, but reinitializing even harm the accuracy of the method [76].
With the problems listed above, this motivates methods which preserve the LS profile
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and do not need reinitialization. One technique for preserving the LS profile is to use
expansion velocities. Unfortunately, computing these at each time step is computationally
expensive. Another preservation method, the SDPLS method developed by Fricke et al.
[17], shows promising results and is implemented and tested in this work. Furthermore,
the LS method is coupled to the NS equations and a segregated solver for simulating
two-phase flows is implemented.

In chapter 2 the foundations for the mathematical model of two-phase flows and the
unstructured FVM are given. In chapter 3 the LS method is presented and a literature
review is given. Chapter 4 describes how two-phase flows are modeled with the LS method
and derives the discrete equations. In chapter 5, the most important developments and
implementations are described. Chapter 6 presents the results for interface advection
with the developed LS method, the implemented SDPLS method and results for the
3D stationary droplet two-phase flow test case with the developed solver. Chapter 7
summarizes and discusses the main results of this thesis.

1.2. Two-phase flow numerical methods

In the field of continuum physics, the modelling of two-phase flow systems involves the
description of the different phases and their positions in space. There are a variety of
approaches to consider, each with their own advantages and disadvantages depending on
the specific physical phenomena, time and domain scales, and available computational
resources. A comprehensive review of different numerical two-phase flow methods is
given in [57, 79, 21]. Here, the categories of numerical two-phase flow methods and how
the LS method relates to them are described.

Numerical two-phase flow methods can be classified in many ways. These include the
governing equations (Eulerian, Lagrangian and Lagrangian-Eulerian methods); the dis-
cretization of the governing equations (Finite Difference Method (FDM), FVM, Finite
Element Method (FEM) and spectral methods); and the nature of the interface (sharp
interface and diffuse interface methods). The LS method belongs to the Eulerian methods,
which implicitly describe the interface as a field defined over the entire solution domain. In
this work, the LS method is combined with the unstructured FVM, as the FVM is commonly
used in CFD due to its high volume conservation. However, the LS method can also be
combined with the FEM, as was originally done by Dervieux and Thomasset [12].

3



The LS method is a sharp interface method, which means that the interface between two
phases is infinitesimally thin and carries no mass. This is particularly true for immiscible
phases and is a valid assumption in many cases. However, for small scale events such as
small droplet collisions, the boundary layer between the phases (approximately 100nm
thick) may be taken into account. This is done by diffuse interface methods, such as the
phase field method [21]. There are other sharp interface methods, such as Front Tracking
(FT) methods or Volume of Fluid (VoF) methods. FT methods explicitly represent the
interface by line segments in two dimensions and triangular surface segments in three
dimensions, and track them in a Lagrangian manner. Despite the high accuracy of these
techniques, difficulties arise with topological changes and re-meshing of interface regions
where segments become too dense or sparse. VoF methods, on the other hand, implicitly
represent the interface through a volume fraction field, have volume conservation to
machine tolerance, and can naturally handle topological changes. However, the computa-
tion of interface properties such as curvature or surface normal is difficult. LS methods
represent the interface implicitly, through a LS of a higher dimensional function, and have
low computational cost. They can also easily compute the curvature and interface normals,
and handle topological changes naturally. The main disadvantage of the LS method is its
lack of volume conservation and accuracy. See section 3 for a detailed description of the
LS method.

1.3. OpenFOAM

OpenFOAM is an open source software for CFD,
developed by OpenCFD Ltd and distributed under
the GPL licence. It is an object-oriented and highly
efficient C++ framework which is suitable for the
development and testing of numerical methods
without the need to implement the unstructured
FVM from scratch. OpenFOAM provides an exten-
sive library of solvers and models for various physical phenomena such as multiphase
flows and turbulence. It also includes advanced CFD features such as AMR, support for
unstructured meshes and MPI parallelism for running on High Performance Computing
(HPC) clusters. In addition, its text file-based simulation cases allow scripting and automa-
tion, such as parameter study generation with pyFoam. In this work, OpenFOAM-v2212
is chosen as the implementation framework due to these several advantageous features.
[46, 74]
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2. Foundations

2.1. Mathematical model

This section provides a description of the investigated problem and a brief overview of the
mathematical model that is used. For a detailed derivation of the equations, the interested
reader is referred to [20, 21, 78, 79].

Ω+(t)

Σ(t)

θ

∂Ω

∂Ωwall
Ω−(t)

Γ

nΣ

Figure 2.1.: Mathematical model [37]

A two or three dimensional spatial domain Ω ⊂ R2 or R3 is given. Within the domain,
a laminar two-phase flow system is considered where the two phases are immiscible,
incompressible, viscous, isotropic Newtonian with constant material properties. Both
phases move in time and are subject to surface tension and gravity forces. The system
is isothermal and there are no phase transitions or reactions between the phases. The
two phases in the domain occupy the subdomains Ω+(t) and Ω−(t) which are functions of
time t such that Ω = Ω+(t) ∪ Ω−(t) and Ω+(t) ∩ Ω−(t) = ∅. The domain boundaries are
denoted as ∂Ω. The phases are separated by a sharp interface Σ(t), which is infinitesimally
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thin and contains no mass. The interface normal vector nΣ points from Ω−(t) to Ω+(t).
See the sketch in figure 2.1. Within the domain the velocity field v(x, t) and the pressure
field p(x, t) are defined as functions of position x ∈ Ω and time t ∈ [t0, tend]. The density
and viscosity of the phases are denoted as ρ±, µ±.

2.1.1. Standard model for two-phase flows

The conservation of mass and momentum holds within each subdomain, Ω−(t) and Ω+(t),
and is governed by the NS equations (2.2) with the gravity vector g and the stress tensor

Si = −pI+ µi(∇v +∇(v)T ). (2.1)

∇ · v = 0

∂t(ρ
iv) +∇ · (ρivv) = ∇ · Si + ρig

}︄
in Ωi, i = +,− (2.2)

JvK = 0

JSK · nΣ = σκΣnΣ

}︄
on Σ (2.3)

Boundary conditions, equation (2.3), with JφK = φ+ − φ− model the interface Σ(t). For
the velocity no-slip is considered, hence the velocity is continuous. Furthermore, the
surface tension force at an interface balances the discontinuity of the normal stress along
the fluid interface [5], with the constant surface tension coefficient σ, the interface mean
curvature κΣ as defined in equation (2.4) and the surface normal unit vector nΣ pointing
into subdomain Ω+(t). For a detailed derivation see [21].

κΣ = −∇Σ · nΣ (2.4)

Equations (2.2) and (2.3) are known as the standard model for two-phase flows [21].
However, since the interface moves with time, the subdomain boundaries are not stationary,
which causes difficulties. Therefore, the next formulation is often used with the LS method.

2.1.2. Single-field Navies-Stokes formulation

Instead of having two sets of NS equations, one for each subdomain Ω±(t), and interface
conditions, an equivalent Partial Differential Equation (PDE) system for the whole domain
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was derived by Brackbill et al. [4]. The phase indicator function χ, also known as
characteristic or marker function [12, 78, 4, 64], is introduced as

χ(x, t) =

{︄
1, x ∈ Ω−

0, x ∈ Ω+
, (2.5)

and is used to ensure that discontinuities across the interface are integrated into the
material properties. With χ the global density ρ and viscosity µ are expressed as

ρ(x, t) = χ(x, t)ρ− + (1− χ(x, t))ρ+, (2.6)
µ(x, t) = χ(x, t)µ− + (1− χ(x, t))µ+. (2.7)

With these global representations of the material properties the set of equations is rewritten
as

∇ · v = 0

∂t(ρv) +∇ · (ρvv) = ∇ · S+ ρg + fΣ

}︄
in Ω, (2.8)

to the so-called single-field or one-fluid NS formulation [5, 78], which is valid in the whole
domain. It utilises the surface tension force not as a boundary condition anymore but
rather as a volumetric force fΣ. Brackbill et al. [4] introduced the CSF model to calculate
fΣ as

fΣ = σκΣδΣnΣ, (2.9)

where δΣ = δ(x − xΣ) is a Dirac δ-distribution that results in fΣ acting as a singular
volumetric force, see [20, 21] for a derivation. Rewriting the momentum equation and
inserting the dynamic pressure p′ defined as

p = p′ + ρg · x
−∇p = −∇p′ − (g · x)∇ρ− ρg

(2.10)

yields the set of single-field NS equations that will be used throughout this work

∇· v = 0

∂t(ρv) +∇ · (ρvv)−∇ · (µ∇v) = −∇p′ − (g · x)∇ρ+ fΣ +∇ · (µ(∇v)T )

}︄
in Ω.

(2.11)
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2.2. Unstructured Finite Volume Method

This section provides a description of the unstructured Finite Volume Method (FVM). For
a comprehensive introduction it is referred to [39, 80, 42].

Figure 2.2.: Unstructured mesh for a flange from the cfMesh tutorials

In fluid dynamics and other disciplines, the physical system is often modelled as a system
of Ordinary Differential Equations (ODEs) or PDEs with initial and/or boundary conditions.
The evaluation of an analytical solution is only possible in rare cases. Therefore numerical
approximation methods have been developed, the unstructured FVM is one of them.
Usually numerical methods discretize the PDEs into an algebraic linear system, which
then is solved, at least approximately. With discretization, the continuous solution space is
transformed into a discrete space. Additionally, all derivatives are discretized, by replacing
them with representations connected to the discrete solution like finite differences. The
idea of the FVM is to divide the domain into a finite number of small volumes, also called
cells, see figure 2.2 for an example of a discretized domain. The key step of the FVM is to
integrate the governing equations over each cell yielding a system of coupled equations.
Discretizing these equation with so-called schemes and solving the resulting algebraic
linear system yields an approximated discrete solution of the problem. Overall the FVM
can be structured in the three steps of
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1. domain discretization,

2. PDE discretization,

3. solving the algebraic linear system.

For demonstration purpose an Initial-Boundary Value Problem (IBVP) with a scalar trans-
port PDE is considered. The three dimensional spatial domain is denoted by Ω ⊂ R3. The
domain can has any shape, for example see figure 2.2. The independent variable x ∈ Ω
denotes position in the domain and the independent variable t ∈ [t0, tend] time between t0
the initial time and tend the end time. φ(x, t) is the solution variable which depends on x
and t. Given is a velocity field v(x, t), D the diffusion coefficient, the possible non-linear
autonomous source term Ŝ(φ(x, t)), the function g(x) describing fixed Diriclet-values at
the Direclet domain boundary ∂ΩD, a homogeneous Neumann boundary condition at
∂ΩN and a initial condition φ0(x) defined at t0. Then, the IBVP is formulated as

∂φ(x, t)
∂t

+∇· (vφ(x, t))−∇· (D∇φ(x, t)) = Ŝ(φ(x, t)), x ∈ Ω, t ∈ [t0, tend],

φ(x) = g(x), x ∈ ∂ΩD,
∇φ(x) · n∂Ω = 0, x ∈ ∂ΩN ,

φ(x, t0) = φ0(x), x ∈ Ω.

(2.12)

2.2.1. Domain discretization

Spatial discretization

The first step is to approximate the solution domain Ω by a discretized solution domain
Ωh. With that the domain is divided into a set C of disjoint finite volumes or cells which
form the solution domain as an union

Ωh =
⋃︂
c∈C

Ωc. (2.13)

This set of cells is called mesh or grid. Unlike the structured FVM, cells in the unstructured
FVM can have any shape and are constructed from at least four possible non-planar faces.
Typically, hexahedral cells are desired, but any polyhedral cell shape is possible. See figure
2.2 for an unstructured mesh example. In contrast to the structured FVM, this does not
allow for directional connectivity in the mesh. Each cell in the mesh is only connected
to its immediate neighbours. Essential for the FVM is the centroid xc of a cell Ωc. Let
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Sf Nf

xf

Of
xc

Ωc
y

z

x

Sf
xp

Figure 2.3.: Polyhedral cell [38, figure 3]

P = {xc : c ∈ C} be the set of centroids of all cells C. Figure 2.3 shows a polyhedral cell
Ωc with its cell centroid xc, a shaded face f , its face centroid xf and its surface normal
vector Sf with length |Sf |. From the view of the face f , it is shared between two cells
Of and Nf , where the latter is not shown. For several reasons, ownership is declared for
each face. The face is owned by cell Of and cell Nf is its neighbour. The surface normal
vector Sf always points from owner to neighbour.

Temporal discretization

The temporal domain T = [t0, tend] is discretized into Th, a finite set of points in time
written as

Th =
{︁
tn : t0 < t1 < . . . < tn < . . . < tend

}︁
(2.14)

Solution discretization

Goal of the FVM is to find a approximate solution to the IBVP, equation (2.12). With the
spatial and temporal domain being discretized asΩh and Th we can define the approximate
solution φh ≈ φ(x, t) as

φh = {φh(xc, tn) : xc ∈ P, tn ∈ Th} (2.15)

10



The approximate solution φh is the set of solution values φh(xc, tn) defined at the cell
centroids xc at time tn, representing mean values for each cell. For the rest of the work
the abbreviation φh(xc, tn) = φnc is used.

2.2.2. Equation discretization

As the equation depends on spatial dimensions x and the temporal dimension t, the
discretization is done separately.

Spatial discretization

Having the spatial domain discretized, the scalar transport PDE, equation (2.12), is not
considered globally anymore, instead the equation is considered in every cell. Integrating
the equation over every cell, with index c ∈ C denoting any cell in the set C, yields∫︂

Ωc

∂φ(x, t)
∂t

dV+

∫︂
Ωc

∇·(vφ(x, t)) dV−
∫︂
Ωc

∇·(D∇φ(x, t)) dV =

∫︂
Ωc

Ŝ(φ(x, t)) dV. (2.16)

With the use of the divergence theorem, the second and third volume integral of the left
hand site of the equation are rewritten as surface integrals, which yields∫︂

Ωc

∂φ(x, t)
∂t

dV +

∫︂
∂Ωc

(vφ(x, t)) · n dS −
∫︂
∂Ωc

(D∇φ(x, t)) · n dS =

∫︂
Ωc

Ŝ(φ(x, t)) dV.

(2.17)
Then, the surface integrals are replaced by the sum of surface integrals of each face of the
cell, yielding∫︂
Ωc

∂φ(x, t)
∂t

dV +
∑︂
f∈Fc

∫︂
Sf

φ(x, t)v ·n dS−
∑︂
f∈Fc

∫︂
Sf

(D∇φ(x, t)) ·n dS =

∫︂
Ωc

Ŝ(φ(x, t)) dV.

(2.18)
Until this point, the equation is still exact for cell Ωc.

Discretizing spatial derivatives

Now, first approximations and the discretized solution variable φh are introduced with the
discretization of derivatives. Starting with the discretization of spatial derivatives, the
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temporal derivatives are ignored for the moment. In the spatial dimension, the problem is
a Boundary Value Problem (BVP), which is discretized with the unstructured FVM leading
to a semi-discretized PDE, semi-discretized because the temporal derivatives will still be
there. First, in equation (2.18) the volume integrals are replaced by the centroid value φc
times the cell volume |Ωc| and the surface integrals are replaced by the surface centroid
value φf times the surface area |Sf |, see equations (2.19) and (2.20). This is second order
accurate and is further explained in [39].∫︂

Ωc

φ(x) dV ≈ φc|Ωc| (2.19)

∫︂
Sf

φ(x) dS ≈ φf |Sf | (2.20)

For the temporal term, the Leibniz integral rule is applied to switch between volume
integral and partial temporal derivative. Then the volume integral is replaced by the
centroid value times the cell volume, see equation (2.21).∫︂

Ωc

∂φ(x, t)
∂t

dV =
∂

∂t

∫︂
Ωc

φ(x, t) dV ≈ ∂φc(t)

∂t
|Ωc| (2.21)

The source term can generally be any non-linear function, that the final linear solver can
not handle. Linearization with Ŝc being a constant and Ŝp the proportionality constant to
the linear part yields

Ŝ(φ(x, t)) ≈ Ŝc + Ŝpφ(x, t). (2.22)

Inserting equations (2.19)-(2.22) into the PDE, equation (2.18), yields

∂φc
∂t
|Ωc|+

∑︂
f∈Fc

φfvf · Sf −
∑︂
f∈Fc

Df (∇φ)f · Sf = Sc|Ωc|+ Spφc|Ωc|, (2.23)

where Sf = nf |Sf | and Fc being the set of all faces belonging to cell c. This introduces
face values φf in the advection term and surface normal gradients (∇φ)f · Sf in the
Laplace term. Since the FVM only solves for the centroid values φc, these quantities are
approximated by so-called schemes, similar to finite differences. In the following, the
standard schemes are presented and numerical errors typical for unstructured meshes are
mentioned. Details of these errors are given in the section 2.2.4.

For the advection term, the Gauß linear scheme is typically chosen because of its second
order accuracy. For Cartesian grids it is known as CDS. The general second order conver-
gence is compromised if the mesh is skewed. It is also not bounded, so oscillations in the
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Figure 2.4.: CDS applied on an orthogonal mesh [39, Figure 1.8]

solution can occur. [42]

φf ≈ wfφNf
+ (1− wf )φOf

with wf =
∥xf − xOf

∥2
∥df∥2

, df = xNf
− xOf

(2.24)

For the Laplace term, the Gauß linear orthogonal scheme is typically chosen. The Laplace
term is smooth and bounded. However, the second order convergence of the scheme is
harmed by a non-equidistant and skewed mesh. In addition, a non-orthogonal mesh harms
the convergence order, which can be compensated by explicit cross-diffusion correction.
[80, 42, 27]

(∇φ)f · Sf = (∇φ)f · nf |Sf | ≈
φNf
− φOf

∥df∥2
|Sf | (2.25)

Inserting the interpolation schemes, equation (2.24) and (2.25), into equation (2.23)
yields equation (2.26), the semi-discretized scalar transport PDE, where Nc is the set of
all neighbouring cells to cell c and ac, aN are coefficients summed up from all known
quantities.

∂φc
∂t

= âcφc +
∑︂
n∈Nc

âNφN + Ŝc (2.26)
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Temporal discretization

Now the semi-discretized PDE, equation (2.26), of each cell forms a coupled system of
scalar Initial Value Problems (IVPs), because only the temporal derivatives and the initial
conditions are left. There are several numerical methods for solving IVPs, including
one-step and multi-step methods. The focus here is on one-step methods. Given a general
scalar IVP

∂φ(t)

∂t
= f(t, φ(t)), t ∈ [t0, tend],

φ(t0) = φ0.
(2.27)

Temporally integrating the problem from tn to tn+1, where δt = tn+1 − tn, and using the
right quadrature rule to approximate the integral yields the implicit Euler method

φn+1 − φn

δt
= f(tn+1, φn+1), (2.28)

which is the default in OpenFOAM and is first order accurate. Using the trapezoidal
quadrature rule yields the second order accurate Crank-Nicolson method

φn+1 − φn

δt
=

1

2
f(tn, φn) +

1

2
f(tn+1, φn+1). (2.29)

By applying the chosen method to the IVP given in equation (2.26), collecting all the
coefficients and inserting the solution values from the previous time step φn into the
source term, yields the final discretized equation

acφ
n+1
c +

∑︂
n∈Nc

aNφ
n+1
N = Sc. (2.30)

This equation couples the solution φn+1
c of cell c to its immediate neighbours and can

not be solved without them. Assembling the equations of all cells yields a large algebraic
linear system of the form

Aφn+1 = b, (2.31)

where A is the system matrix and b the force vector. For the incorporation of the boundary
condition it is referred to [39, 42, 80].
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2.2.3. Solving the algebraic linear system

This linear algebraic system must be constructed and solved at each time step. It is a large
system of size N × N , where N is the number of cells. As only the neighbouring cells
affect the solution for a given cell, this system has a band structure and is sparse. With
these characteristics, iterative linear solver are appropriate for solving, like Gauß-Seidel
or Conjugate-Gradient. For further details on solving algebraic linear systems, the reader
is referred to [63].

2.2.4. Discretization errors with unstructured meshes

The section lists errors related to unstructured meshes. Unstructured meshes can be
characterised as non-equidistant, skewed and non-orthogonal, all of these characteristics
are suboptimal and lead to further discretization errors that can negatively affect the
convergence rate.

Non-equidistant error

With a non-equidistant mesh, the distance between the face centroid and the owner
cell centroid is generally not equal to the distance between the face centroid and the
neighbour cell centroid ∥xf − xOf

∥2 ̸= ∥xf − xNf
∥2.. As a result, a face centroid and the

centroid between xOf
and xNf

do not coincide. This error affects Laplacian schemes, since
the gradient approximation is only second order accurate at the centroid of the vector
xNf
− xOf

.

Skewness error

Mesh skewness occurs when the vectors xf − xOf
and xf − xNf

are generally not collinear.
Again, the result is that a surface centroid and the centroid between xOf

and xNf
do not

coincide. Hence Laplacian schemes are affected. But furthermore, advection schemes are
affected, as the face interpolation do not cross the face center.
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Non-orthogonality error

The mesh is not orthogonal if the vectors xNf
− xOf

and Sf are not parallel. This error
affects Laplacian schemes as the gradient in the face normal direction Sf can not be
expressed with φNf

and φOf
.
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3. Level Set Method

This chapter provides an overview of the Level Set (LS) method. A literature survey is
given with emphasis on developments regarding LS reinitialization and preserving. The
plain LS method is a pure interface advection method with the advecting velocity field
being considered given at any time. This will be the case for this chapter. The full method
for simulating two-phase flow fields with the LS method coupled to the single-field NS
equations (2.11) is explained in chapter 4.

3.1. Method overview

In 1979 the LS method was developed by Dervieux and Thomasset [12] and was first used
in the CFD context for the advection of two-phase flow. But beyond that, the LS method
is a general concept for describing and advecting surfaces. With several contributions
by Osher and Sethian, the LS method has been popularised and applied in the fields
of image processing, computer vision, computer graphics, computational geometry and
optimization [50, 68, 48, 47, 49, 81].

With LS methods, an interface is implicitly represented as a LS of a higher dimensional
function defined in the domain Ω. Let ψ(x, t) define a scalar function, here called LS
function, as a function of position x ∈ Ω and time t ∈ [t0, tend]. Then an interface Σ(t) can
be defined as the λ-LS, see equation (3.1). Typically, the zero LS denotes the interface,
but other LS are possible, as in [45, 3].

Σ(t) = {x : ψ(x, t) = λ}, λ ∈ R (3.1)

Figure 3.1 sketches a interface Σ(t) and its enclosed phase (grey) for a two dimensional
case. The interface Σ(t) can be pictured as the intersection of the LS function ψ : [R2,R]→
R (red) with the plane (blue) representing the λ-level. Hence, the interface Σ(t) consists
of the set of points where ψ has the value λ, the so-called λ-LS.

17



Σ(t) Σ(t) Σ(t)

Figure 3.1.: Adapted from Nicoguaro (2018). Level-set method. Wikimedia. Licensed
under CC-BY-4.0.

Advected is the interface implicitly by advecting the LS field with the so-called LS advection
equation (3.5), which is derived from the definition that a fluid particle of the interface
X(t) ∈ Σ(t) keeps its λ-LS

dψ(X(t), t)
dt

= 0, (3.2)

evaluating the total derivative

∂ψ(x, t)
∂t

+
dX(t)
dt
∇ · ψ(x, t) = 0, (3.3)

inserting the pathline ODE
dX(t)
dt

= v(x, t) (3.4)

and the incompressibility condition, equation (2.11).

∂ψ(x, t)
∂t

+∇ · (v(x, t)ψ(x, t)) = 0 (3.5)

The level-set function should be smooth in order to compute derivatives and should fulfill

ψ(x, t) > λ, x ∈ Ω+(t),

ψ(x, t) < λ, x ∈ Ω−(t).
(3.6)

18

https://commons.wikimedia.org/wiki/File:Level_set_method.png


Having a LS function, the interface normal vector nΣ, the interface mean curvature κΣ
and the phase indicator χ can be computed as

nΣ(x, t) =
∇ψ(x, t)
∥∇ψ(x, t)∥2

, x ∈ Σ(t), (3.7)

κΣ(x, t) = −∇ · nΣ, x ∈ Σ(t), (3.8)

χ(x, t) =

{︄
1, ψ(x, t) ≤ λ,
0, ψ(x, t) > λ,

x ∈ Ω. (3.9)

Typically, the LS function is initialised to be the signed distance function (equation (3.10)),
where the interface is at the zero LS and has the signed distance property (equation
(3.11)). This function has many advantages, such as avoiding steep and flat gradients,
being monotone across the interface, being very smooth, and avoiding rapidly changing
features [47]. These characteristics make it a good choice for the LS function.

ψ(x) =

⎧⎪⎨⎪⎩
+minxΣ∈Σ ∥x− xΣ∥2, x ∈ Ω+,

−minxΣ∈Σ ∥x− xΣ∥2, x ∈ Ω−,

0, x ∈ Σ

(3.10)

∥∇ψ(x)∥2 = 1, x ∈ Ω (3.11)

The LS method has a number of advantages, such as the ability to easily extend from
two to three dimensions, the natural handling of topological changes such as coalescence
or breakups as sketched in figure 3.1, the natural handling of singularities and self-
intersections in the evolving interface, the easy computation of curvature and the interface
normal which are required to evaluate the surface tension force, and the computational
efficiency due to the lack of explicit computation of the interface. However, the level set
method is not without its drawbacks. Discrete solutions of the LS advection equation
(3.5) are prone to numerical errors that lead to mass loss or gain [5]. In particular, with
grid-scale interface structures, LS methods lose (or gain) mass [61, 60]. In addition, as the
interface is advected, the signed distance property can be lost and gradients can diminish
or become very steep when advected over a long time [8, 72]. This leads to errors in the
numerical evaluation of geometric properties of the interface such as interface normal
and curvature. Also, the desired second order convergent CDS scheme for the advection
term produces oscillations around the interface, as can be seen in [45].

The interface properties, mean curvature and surface normal, are needed for the evaluation
of the surface tension force in the single field NS equations, when simulating a two-phase
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flow field. Since these quantities are derived from the LS field, it is crucial to have an
accurate advected LS field. Any noise in the LS field will lead to even more noise in the
normal field and mean curvature, since they are computed with derivatives of the LS
field [10]. Furthermore, wrong interface properties lead to high artificial velocities near
the interface, so-called parasitic currents [12, 72, 47]. As mentioned, the full two-phase
flow simulation with the LS method is described in chapter 4. In this chapter, for the
pure interface advection, the interface properties are not needed, but their accurate
computation should be mentioned as an important goal at this point.

For the advection type LS equation (3.5) different advection schemes have been used and
developed for accurate advection and numerical oscillation prevention. An overview is
given in the section 3.2. Several developments have been proposed to avoid the loss of
the LS profile. Reinitialization attempts to restore the signed distance LS of a distorted
signed distance field. This is reviewed in section 3.3. A similar procedure is attempted by
Conservative Level Set (CLS) methods. After some advection steps, a supporting PDE is
solved in pseudo time to restore the chosen LS profile. This is discussed in the section
3.5. With extension velocities, the LS field is tried to be preserved by using an alternative
velocity field. This approach is reviewed in section 3.4. Similarly, the novel SDPLS method,
which attempts to preserve the signed distance as the LS field is advected, is presented in
section 3.6.

3.2. Advection schemes

This section discussed the important role of the advection scheme for discretization of
the LS advection equation (3.5) and briefly presents schemes that has been used in the
literature.

As noted in chapter 2.2, the standard advection scheme is Gauß linear, also called CDS,
which is second order accurate but not bounded/ monotone. However, despite the fact
that the LS field is uniformly smooth across the interface, a number of studies have
shown that the CDS can generate numerical oscillations close to the interface [45, 3, 83].
These numerical oscillations occur in regions of small gradients due to partial floating-
point cancellation errors [51], in regions of steep gradients close to discontinuities [3,
56] or in regions of thin films, break-ups or merging of interfaces where discontinuous
derivatives occur [54, 58]. Unfortunately, the LS advection equation (3.5) lacks a diffusion
term, which would naturally compensate for numerical oscillations. Therefore, a more
bounded/ monotone scheme for the advection of the LS field is needed. The upwind
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scheme is the simplest choice for a bounded scheme, but is only first order accurate.
Since the FVM is generally second order accurate and a high accuracy of the LS field is
desired for the purposes of mass conservation and accurate interface quantities, other
high accuracy schemes are required. But according to the Godunov theorem, higher
order linear schemes for discretizing PDEs can not be monotone. This led to the use of
higher order monotone non-linear Total Variation Diminishing (TVD), Normalised Variable
Diagram (NVD), Essentially Non-Oscillatory (ENO), WENO and Semi-Lagrangian schemes
for LS methods.

The ENO and WENO schemes are commonly used for LS methods due to their high order
of accuracy. They involve a non-oscillatory piecewise polynomial reconstruction of the
solution from its cell averages and use a larger adaptive stencil of grid points, see [23,
35]. Despite their high accuracy for unstructured meshes, these schemes are difficult to
implement due to their large stencils. Existing implementations for unstructured meshes
make reuse of assembled stencils to be computationally efficient, but for AMR in outlook
the computational cost of assembling and communicating across multiple MPI boundaries
makes them inefficient for the goal of this work. There is no ENO or WENO scheme
available in OpenFOAM-v2212.

Similar to blended schemes, TVD and NVD schemes blend upwind biased and CDS schemes.
However, their blending factor, called flux limiter, is evaluated on a local basis. TVD and
NVD schemes are also popular in the LS context because they are computationally efficient
and do not require large stencils, making them suitable for unstructured meshes. The
Total Variation TV , for one dimension defined in equation (3.12) where f ∈ F and F is
the set of all internal faces, with the boundedness criterion, equation (3.13), have been
used to derive a TVD condition for adaptive bounded schemes that blend between a higher
order scheme and a lower order upwind scheme [22, 73]. OpenFOAM provides several
TVD schemes such as van Leer and SuperBee.

TV (ψn) =
∑︂
f

|ψnN − ψnO| (3.12)

TV (ψn+1) ≤ TV (ψn) (3.13)
With the concept of NVD Leonard [31] invented a first NVD scheme and a less restrictive
and more general approach to boundedness [26]. In the following, the explanation is
given for Cartesian meshes, while the adaptation to unstructured meshes can be found
in [26]. To avoid oscillations, it is required that each cell value ψc and the values of its
upwind and downwind neighbours ψU , ψD satisfy

ψU ≤ ψc ≤ ψD or ψU ≥ ψc ≥ ψD. (3.14)
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Let ψf be the face value between the cell Ωc and its downwind neighbour ΩD. For
Cartesian meshes the normalized face value ψ̃f is evaluated as a non-linear function of
the normalized cell value ψc̃ as

ψ̃f = f(ψc̃) with ψ̃c =
ψc − ψU
ψD − ψU

and ψ̃f =
ψf − ψU
ψD − ψU

(3.15)

In order for the scheme to ensure ψf stays bounded between ψc and ψD, following must
be fulfilled

ψ̃c ≤ ψ̃f ≤ 1, if 0 ≤ ψ̃c ≤ 1,

ψ̃f = ψ̃c, else.
(3.16)

The second case states that whenever an oscillation appears in the scale of the grid size, a
switch to upwind is made. Consequently, any flux limiter satisfying the equation (3.16)
yields a monotone scheme. OpenFOAM provides NVD schemes such as MUSCL, UMIST.

Note that all high accuracy monotone schemes reviewed so far are non-linear, meaning
they have weights or flux limiters that depend on the solution itself and are explicitly
evaluated, introducing a CFL-like condition [73]. Furthermore, these schemes are derived
considering one dimension without general statements to more dimensions. This makes
convergence proofs only available in rare cases. [26]

To come to another class of schemes, the semi-Lagrangian schemes. So far, all the advection
schemes reviewed have been of Eulerian type. This means that they discretize the Eulerian
type LS advection equation (3.5). The Semi-Lagrangian schemes or Semi-Lagrangian
methods also use an Eulerian grid, but discretize the Lagrangian advection equation (3.2),
where X(t) is a fluid particle in the domain Ω. For example, using the implicit Euler
method to discretize the ODE yields

ψ(X(tn+1), tn+1) = ψ(X(tn), tn). (3.17)

In other words, a fluid particle keeps its LS. The idea of Semi-Lagrangian schemes is to
calculate the point of origin of a fluid particle. If the position of the particle X(tn+1) at
time tn+1 is known, the LS value can be interpolated with the LS field of the previous time
step. The position of the origin is calculated with the pathline ODE, equation (3.4), using
the same ODE approximation method as before. Semi-Lagrangian schemes update all
centroids of an Eulerian mesh with this approach, are unconditionally stable in time and
bounded if a bounded interpolation is used, such as linear interpolation for structured
meshes or inverse distance weighted interpolation for unstructured meshes [70]. In
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general, Lagrangian schemes are more accurate in advecting small phase filaments than
their Eulerian counterparts [61, 60]. However, Semi-Lagrangian schemes are not strictly
mass conservative in the LS context, since the rate of change does not correspond to the
flux over faces as in the standard FVM. [18]. Nevertheless, Semi-Lagrangian schemes show
good mass conservation as they preserve material characteristics [14]. OpenFOAM-v2212
does not provide Semi-Lagrangian schemes.

3.3. Reinitialization

One of the earliest developments regarding the LS method is the reinitialization or also
called redistancing. This technique is specific to the signed distance LS function. When
the signed distance LS field is advected, it loses its signed distance property. Thus,
reinitialization techniques must be applied periodically to restore the signed distance.
Given a distorted signed distance field ψ̃(x), the goal of reinitialization is to restore a
signed distance field ψ(x) without moving the initial zero LS. The reinitialization problem
can be formulated as

∥∇ψ(x)∥2 = 1, x ∈ Ω,

ψ(x) = 0, x ∈ {x : ψ̃(x) = 0}.
(3.18)

There are different approaches, which can be divided into PDE based reinitialization an
direct reinitialization.

3.3.1. Partial Differential Equation based reinitialization

The initial idea of a reinitialization PDE came from Rouy and Tourin [62] and was further
developed by Sussman et al. [72]. Instead of solving the problem equation directly (3.18),
the reinitialization PDE (3.19) is suggested.

A distorted signed distance field ψ̃(x, t) is given at time t. For the corrected signed distance
field ψ(x, τ) the reinitializing PDE is solved in the pseudo time τ . As equation (3.19)
restores the signed distance from the interface to the boundaries, there is even no need to
solve for the steady state.

∂ψ(x, τ)
∂τ

= sgn(ψ̃(x, t))(1− ∥∇ψ(x, τ)∥2),

ψ(x, 0) = ψ̃(x, t)
(3.19)

23



with

sgn(ψ) =

⎧⎪⎨⎪⎩
−1, ψ < 0,

0, ψ = 0,

+1, ψ > 0

(3.20)

or to avoid discontinuity the sgn function is often smoothed by using

sgnsmoothed(ψ) =
ψ√︁

ψ2 + ε2
(3.21)

where ε is proportional to the mesh spacing [47]. This method is effective if the level
set function is initially close to a signed distance function, but if the level set function
is flat near the interface, it may take a long time to complete the process. Furthermore,
analytically the reinitialization equation (3.19) does not move the zero LS, but as reported
by several authors the discretized equation does, and can even move the interface across
multiple cells due to numerical errors. [9, 47, 58, 54]

Sussman and Fatemi [71] proposed a reinitialization method with improved mass conser-
vation. They extended the equation (3.19) with a so-called constraint and used higher
order ENO schemes to improve the accuracy. But according to Saye and Sethian [64], the
proposed corrections are not satisfactory and direct reinitialization is the more modern
and preferable approach as they do not move the interface across cells.

3.3.2. Direct reinitialization

The direct reinitialization method, first introduced by Chopp [8], is the most intuitive
approach to reinitialization. This technique explicitly constructs the interface and com-
putes the signed distances to it. While some effective algorithms for direct redistancing on
Cartesian meshes have become available, methods for unstructured meshes are more rare.
Methods developed for unstructured meshes were mainly for the FEM, but the idea is
transferable to the FVM. They all locate the position of the interface by linear interpolation
between two mesh nodes with a change of sign. The linear interpolations are connected
to form the approximated interface as a union of linear segments. The main differences
between the methods developed by [15, 6, 44] lie in the way they compute the distances
from far field nodes to the approximated interface.

The main advantage of these methods is that they do not move the zero LS across cells
[44]. However, these methods are computationally expensive and slow, especially if
reinitialization has to be done at each time step. They also have some unpleasant side
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effects, such as oscillations in curvature [54]. All reported methods for unstructured
meshes are only first order accurate.

Conservative direct reinitialization

Mut et al. [43] proposed a mass conservative direct reinitialization technique for unstruc-
tured meshes also in FEM context. After reinitialization the nodes of cells containing the
interface, a local mass conservation correction step is proposed. There the LS of the nodes is
corrected to have the same amount of characteristic phase as before. LetH(ψ) be the Heav-
iside step function, then for all cells containing the interface ΩΣ ∈ {Ωc : Ωc∩Σ ̸= ∅} ⊆ Ωh,
nodal update LS values are calculated iteratively to fulfil the following conditions∫︂

ΩΣ

H(ψ(x))dx =

∫︂
ΩΣ

H(ψ̃(x))dx, ΩΣ ∈ {Ωc : Ωc ∩ Σ ̸= ∅} (3.22)

Since a node can be shared by several cells containing the interface in FEM, the update
values of the nodes are averaged and scaled to fulfil a global mass constraint similar to
equation (3.22). Nodes in the far field are updated using an algorithm similar to the Fast
Marching Method (FMM), see section 3.3.3. Further improvements have been suggested
[2, 41] but without significant improvements in the order of convergence.

3.3.3. Fast Marching Method

Fast Marching Method (FMM), a development by Sethian [67, 65, 68], is a Dijkstra-like
algorithm for approximating the solution to non-linear eikonal equations of the form

∥∇ψ(x)∥2 = F (x), F (x) > 0, x ∈ Ω,

ψ(x) = g(x), x ∈ Σ.
(3.23)

The FMM can be used to directly solve the reinitialization problem (3.18) efficiently with
O(N log(N)) complexity, where N is the number of cells. For this the FMM method is
divided into two steps: the initialization and the actual iteration of the method. Goal
of the initialization is to have a narrow band of cells around the interface with values
that approximately fulfill equation (3.23) which can then be used to start the iteration
cycle. This narrow band initialization can be done by direct reinitialization techniques, see
section 3.3.2. Suppose a initialised narrow band is present, the actual iteration starts by
finding the cell with the smallest value which is not fixed, followed by updating and fixing
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its value using a discretized version of equation (3.23). This process is then repeated for
all cells starting from the initialised cells at the interface to the boundaries.

In its first form [67], it was designed for Cartesian meshes and was only first order
accurate as it used the upwind scheme for gradient computations. Kimmel and Sethian
[29] proposed a variation of this first order FMM for two dimensional unstructured meshes,
in particular triangulated meshes. Later Sethain proposed a second order accurate FMM
for Cartesian meshes [65]. Sethian and Vladimirsky [66] extended the second order FMM
technique to general unstructured meshes. For Cartesian meshes, Chopp [9] proposed a
new interpolation method for initializing high order FMMs using higher order polynomials
and root finding with Newton’s method. But the resulting set of equations is difficult to
solve and the iterative Newtonian root finding has a high computational cost and may
not converge [47]. According to Saye and Sethian [64], using the FMM to periodically
reinitialise the signed distance field is computationally expensive in higher dimensions
as it rely on the geometrically complicated reconstruction of the interface with direct
reinitialization techniques [64]. The similar Fast Sweeping Method (FSM) by Zhao [82]
has the same initialization problem .

3.4. Extension velocities

The extension velocities approach, inspired by other areas where LS methods are used, also
addresses the challenge of preserving the signed distance property. In applications such
as dendritic solidification, the velocity is defined only at the interface, so it is necessary to
extend the interface velocity into the entire domain to solve equation (3.5). It is preferable
to extend the interface velocity normal to the interface into the domain. This means that
for a point x not at the interface, its extension velocity vext(x) is the velocity of the nearest
point at the interface. Mathematically, this is expressed by the equation (3.24).

∇vext(x) · ∇ψ(x) = 0, x ∈ Ω,

vext(x) = v(x), x ∈ Σ
(3.24)

Using extension velocities for level-set advection, equation (3.5), preserves the signed
distance property [1, 69, 7].

Malladi et al. [36] computed extension velocities in the domain by extracting the velocity
at the closest point to the front for all grid points. This approach assumes that the
position of the interface is known, requiring an interface approximation. The calculation
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of extension velocities with the FMM has been proposed by Adalsteinsson and Sethian
[1]. However, the problem of how to initialise the narrow band around the interface with
high accuracy for unstructured meshes arises as well.

∂vext(x, τ)
∂τ

+ sgn(ψ(x, t))
∇ψ(x, t)
∥∇ψ(x, t)∥2

· ∇vext(x, τ) = 0 (3.25)

Zhao et al. [83] proposed to achieve a solution to equation (3.24) by solving the support
PDE, equation (3.25), in pseudo time τ , where no boundary conditions are needed as
the characteristics flow out of the interface. Hence there is no need to approximate the
interface.

3.5. Conservative Level Set Method

Olsson and Kreiss [45] developed the so-called Conservative Level Set (CLS) method with
the goals of being conservative, not introducing spurious oscillations, and keeping the
profile of the LS function constant. They suggested using a smeared Heaviside LS function

ψ̃(x, t) =

⎧⎪⎪⎨⎪⎪⎩
0, ψ < ε,
1
2 + ψ

2ε +
1
2π sin

(︂
πψ
ε

)︂
, −ε ≤ ψ ≤ ε,

1, ψ > ε,

(3.26)

where ψ is the signed distance (equation (3.10)). The sharp interface is defined at the
LS of ψ̃(x, t) = 0.5 and at the same time a diffusive interface representation is defined
for 0 < ψ̃(x, t) < 1. However, this LS function is subject to the loss of the initial profile
during advection as the standard signed-distance profile is. Similarly, Olsson and Kreiss
introduced a reinitialization PDE which they solved in pseudo time τ after each time step.

∂ψ̃

∂τ
+∇ · ψ̃(1− ψ̃)nΣ = ε∆ψ̃ (3.27)

Here the convection term acts as a compression flux to the diffuse interface 0 < ψ̃(x, t) < 1.
To avoid discontinuity, the compression flux is balanced by a diffusion term which depends
on the diffusive interface thickness ε. To initialize the LS field at time t = 0, equation
(3.27) is solved to steady state.

Using the FDM with uniform grid and CDS or TVD schemes for the convection term, the
two-dimensional rotating circle test case was investigated. Without reinitialization, the
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TVD scheme SuperBee performed best and CDS performed worst. On the other hand, with
four reinitialization steps the cases have no visual difference and the SuperBee scheme
shows ∼ 1.3 order of convergence for the geometrical error where the CDS shows ∼ 1.9
order of convergence.

Balcázar et al. [3] investigated a two-dimensional shear test case using the CLS method
coupled with the unstructured FVM on a triangular mesh. They developed a TVD scheme
which is a mixture of CDS, upwind and SuperBee. Their tests showing good accuracy
without providing further error properties.

Desjardins et al. [13] have further improved the solving of two-phase flows with the
CLS method. Their Accurate Conservative Level Set (ACLS) method uses the hyperbolic
tangent LS function and the redistancing PDE from the CLS method, which shows good
conservation of the interface during redistancing. However, according to them, the
computed normal field still has spurious oscillations which distort the curvature and thus
the surface tension calculation. They proposed to include a FMM to compute a temporary
signed distance field, which is used to compute the normal field. Implementations were
made using the FDM and higher order TVD schemes for the convection term. Their method
indeed shows better performance than the CLS method, but at the cost of evaluating the
FMM at each time step. [13] Still, the CLS approach introduces interface distortions and
is under research [52].

3.6. Signed Distance Preserving Level Set Method

This section introduces the Signed Distance Preserving Level Set (SDPLS) method devel-
oped by Fricke et al. [17]. The idea is similar to the CLS method. Instead of solving a
redistancing PDE after each time step, the original LS advection equation (3.5) is extended
to preserve the signed distance during advection. In particular, Fricke et al. propose a
non-linear source term, see the r.h.s. of the extended LS advection equation (3.28).
Following their derivation, the source term compensates for local interface stretching or
compression at the zero level set. It is referred to the original paper for details. [17]

∂ψ

∂t
+∇ · (vψ) = ψ

⟨︃
(∇v) ∇ψ

∥∇ψ∥2
,
∇ψ
∥∇ψ∥2

⟩︃
(3.28)

Fricke et al. tested advection with the FVM on Cartesian meshes with a time explicit
discretization, upwind discretization for the convection term and a second order CDS for
the gradients in the source term. Among others, a two-dimensional test case with a droplet
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on a wall exposed to a time- periodic velocity field was investigated. Compared to a setup
with the conventional LS advection equation (3.5), the SDPLS equation (3.28) preserves
∥∇ψ(x, t)∥2 = 1 and shows first order convergence for the signed distance, curvature and
contact angle.
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4. Two-phase flows

This chapter describes the coupling of the LS equation with the NS equations for the
simulation of two-phase flows with the unstructured Finite Volume Level Set method.
Starting with an overview of the governing equations for the description of two-phase
flows with the LS method, the discretization of these equations with the unstructured FVM
is derived. The difficulties encountered are discussed and the final discrete equations for
the iterative segregated solution algorithm are derived. In the last section the importance
of the surface tension force is presented.

4.1. Governing equations

To describe two-phase flows with the LS method, the single-field NS equations (2.11)
as derived in the chapter 2.1 are required. They introduce velocity v and pressure p as
solution variables and the surface tension force fΣ on the r.h.s.. The interface motion
between the two phases is prescribed by the LS equation (3.5), where the LS field ψ
is introduced as a solution variable. The NS equations are coupled to the LS equation
by providing the velocity that moves the LS field. The LS equation is coupled to the NS
equation by the material properties ρ and µ, which depend on the phase indicator χ, and
the surface tension force fΣ(κΣ,nΣ), which includes interface properties. These PDEs
together with the material properties, equations (2.6) and (2.7), and the phase indicator,
equation (3.9), form the governing equations and are summarised in the following box,
where the dynamic pressure is renamed as p← p′.
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Single-field NS equations

∇· v = 0 (4.1)
∂t(ρv) +∇ · (ρvv)−∇ · (µ∇v) = −∇p− (g · x)∇ρ+ fΣ +∇ · (µ(∇v)T ) (4.2)

LS equation
∂tψ +∇ · (vψ) = 0 (4.3)

Material properties

ρ(x, t) = χ(x, t)ρ− + (1− χ(x, t))ρ+ (4.4)
µ(x, t) = χ(x, t)µ− + (1− χ(x, t))µ+ (4.5)

Phase indicator

χ(x, t) =

{︄
1, ψ(x, t) ≤ λ,
0, ψ(x, t) > λ

(4.6)

4.2. Discretization

In this section, the discretization of the governing equations (4.1)-(4.5) for the iterative
segregated solution algorithm is derived.

4.2.1. Discretizing the Partial Differential Equations

The three PDEs, the continuity equation (4.1), the momentum equation (4.2) and the LS
equation (4.3), are discretized with the unstructured FVM and the implicit Euler method,
as explained in chapter 2.2.

The continuity equation (4.1) discretizes as∑︂
f

vn+1
f · Sf = 0. (4.7)

The momentum conservation equation (4.2) discretizes as
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ρn+1
c vn+1

c − ρnc vnc
δt

|Ωc|+
∑︂
f

ρn+1
f Fn+1

f vn+1
f −

∑︂
f

µn+1
f (∇v)n+1

f · Sf =

− (∇p)n+1
c |Ωc| − (g · x)c(∇ρ)n+1

c |Ωc|+ (fΣ)
n+1
c |Ωc|+

∑︂
f

µn+1
f ((∇v)T )n+1

f · Sf . (4.8)

And the LS advection PDE, equation (4.3), discretizes as

ψn+1
c − ψnc
δt

|Ωc|+
∑︂
f

vn+1
f ψn+1

f · Sf = 0. (4.9)

4.2.2. Discrete phase indicator

This section introduces the discrete phase indicator αh, also called the volume averaged
phase indicator. The discrete phase indicator is needed because the discretization with the
FVM introduces cell averaged material properties ρc and µc into the discretized momentum
equation (4.8). The FVM typical cell-wise integration of the continuous material property
equations (4.4) and (4.5) leads to the definition of the discrete phase indicator as

αc(t) =
1

|Ωc|

∫︂
Ωc

χ(x, t) dV. (4.10)

Since the continuous phase indicator χ(x, t) is unknown, this definition can’t be used for
the computation. Instead, the computation is performed with a selected phase indicator
model A as

αh = A[ψh]. (4.11)

With the calculated discrete phase indicator αc inside a cell Ωc, the material properties
for this cell are calculated as

ρc = αcρ
− + (1− αc)ρ+ (4.12)

µc = αcµ
− + (1− αc)µ+. (4.13)

Sharp phase indicator model

The first publications of the LS method used the most intuitive way to calculate the phase
indicator αc. According to the definition of the phase indicator χ, equation (4.6), the use
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of the sharp Heaviside function yields the sharp phase indicator model

αsharp, c =

{︄
1, ψc ≤ λ,
0, ψc > λ.

(4.14)

As accurate as this phase indication approach may be, it introduces discontinuities. This
makes the numerical method prone to discretization errors. Therefore, the standard LS
method often uses the following smoothed version.

Smoothed Heaviside phase indicator model

The smoothed Heaviside phase indicator model introduces a slightly diffuse interface
representation over multiple cells with a phase indicator value between (0, 1). It is defined
as

αsmooth, c =

⎧⎪⎪⎨⎪⎪⎩
0, ψc < −ε,
1
2

(︂
1 + ψc

ε + 1
π sin(πψc

ε )
)︂
, |ψc| ≤ ε,

1, ψc > ε,

(4.15)

where ε is the size of the cell distance ε = O(∆x). The problem here is the dependence
on the signed distance property, or more generally on the initial LS profile, which can
deteriorate with advection causing the interface cell band to widen or narrow. Furthermore,
this model is only first order accurate [47].

Geometrical phase indicator model

We [40] propose a second order accurate geometrical phase indicator that does not rely
on the LS field maintaining its signed distance or initial profile. For the computation, a
piecewise linear interface is reconstructed by least squares fitting. The discrete phase
indicator αc for arbitrarily shaped polyhedrons is then computed with the intersection
algorithm of Kromer and Bothe [30] using the divergence theorem twice.

4.2.3. Main difficulties

This section discusses the main difficulties of the discretized equations (4.7)-(4.9) and
how they are treated in this work.
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As vn+1, pn+1 and ψn+1 are the solution fields, the temporal, convection and diffusion
terms of the momentum equation (4.9) and the convection term of the LS equation
(4.9) are non-linear. Since the FVM method assembles an algebraic linear system, these
terms must be linearized. The non-linear dependence is typically resolved by an iterative
solution approach where the linearized quantities are updated with each iteration until
convergence is reached.

Also, the transpose of the velocity gradient (∇v)T can’t be evaluated implicitly and must
be treated explicitly or updated in each iteration.

The literature has shown that high density ratios
⃓⃓⃓
ρ−

ρ+

⃓⃓⃓
≫ 1 or high viscosity ratios

⃓⃓⃓
µ−

µ+

⃓⃓⃓
≫

1 are difficult for single-field NS approaches. These high ratios, combined with the
abruptly changing discrete phase indicator αh, lead to large momentum steps, which
cause numerical instabilities with the Gauss linear or other unbounded discretizations.

Furthermore, the continuity equation (4.1) and the momentum equation (4.2) alone form
a saddle-point problem, which can not be solved by any iterative method that relies on a
definite system matrix [42]. Therefore, the system is reformulated as shown in the next
section.

Today, productive simulations with the FVM easily scale to cell numbers of ∼ 106 and
more. With multiple solution variables per cell, the resulting algebraic linear system may
be too large for most computer memories. This is why segregated solution algorithms
have been developed in the past. Segregated methods solve one equation at a time and
vector equations component-wise in a specific designed sequence. The unknowns are
replaced by estimates, which are then updated throughout the iterative solution process.
Block-coupled solution algorithms that solve the system at once exist, but are not currently
state of the art and are therefore not used in this work. Specific for segregated solution
algorithms is that there must be at least one equation to compute a solution field. Here,
an explicit equation for the calculation of the pressure field is missing. In the next section,
an equation for evaluating the pressure is derived. The continuity equation (4.1) does not
contain pressure and is unfortunately more of a constraint.

4.2.4. Equations for the segregated solution algorithm

With the motivation for the choice of the iterative segregated solution approach in the
previous section, the discrete equations for this algorithm are derived in this section.
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The derived discrete equations must still be linear in order to be solved with a linear
algebraic solver. This is done by linearizing the non-linear terms, replacing the unknowns
(·)n+1 by estimates (·)∗ which are updated iteratively and converge to (·)∗ → (·)n+1 with
iterations.

Linearizing the LS advection equation (4.9) and using the definition of flux Ff = vf · Sf
at face f yields

ψn+1
c − ψnc
δt

|Ωc|+
∑︂
f

F ∗
f ψ

n+1
f = 0. (4.16)

Linearizing the momentum conservation equation (4.8), and replacing all non-velocity
unknowns by estimates (·)∗ except the pressure p and the surface tension force fΣ yields

ρ∗cv
n+1
c − ρnc vnc
δt

|Ωc|+
∑︂
f

ρ∗fF
∗
f v

n+1
f −

∑︂
f

µ∗f (∇v)n+1
f · Sf =

− (∇p)n+1
c |Ωc| − (g · x)c(∇ρ)∗c |Ωc|+ (fΣ)

n+1
c |Ωc|+

∑︂
f

µ∗f ((∇v)T )∗f · Sf . (4.17)

Then, inserting schemes for face values and derivatives and rewriting the momentum
equation yields

vn+1
c +Hc[v

n+1] = −Dvc(∇p)n+1
c + Dvc(fΣ)

n+1
c + Bvc (4.18)

with

Hc[v] =
1

avc

∑︂
N(c)

avNvN , (4.19)

Dvc =
|Ωc|
avc

, (4.20)

Bvc =
1

avc

⎛⎝−(g · x)c(∇ρ)∗c |Ωc|+∑︂
f

µ∗f ((∇v)T )∗f · Sf

⎞⎠ . (4.21)

Similar to staggered grids, where the velocity is defined at faces rather than cell centroids,
the momentum equation (4.18) is interpolated to faces. Using the interpolation notation

□f = wf□Nf
+ (1− wf )□Of

, (4.22)
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and Dvf (·)
n+1
f = Dvf (·)

n+1
f +O((∆x)2), see [42, p. 586], the face interpolated momentum

equation is written as

vn+1
f +Hf [v

n+1] = −Dvf (∇p)
n+1
f + Dvc (fΣ)

n+1
f + Bvf . (4.23)

Insertion of the Rhie-Chow interpolation [59], defined by

vf = vf − Dvf
(︂
(∇p)f − (∇p)f

)︂
, (4.24)

which suppresses checkerboard oscillation, yields

vn+1
f +Hf [v

n+1] = −Dvf (∇p)
n+1
f + Dvc (fΣ)

n+1
f + Bvf (4.25)

This equation is then inserted into the continuity equation (4.7), yielding the pressure
equation

−
∑︂
f

Dvf (∇p)
n+1
f · Sf =

∑︂
f

Hf [v
n+1] · Sf −

∑︂
f

Dvc (fΣ)
n+1
f · Sf −

∑︂
f

Bvf · Sf . (4.26)

Resulting equations

For the iterative segregated solution approach chosen in this work, an update equation
must exist for each solution field, here v, p and ψ. These update equations are solved
only for one solution field. Other implicit fields are replaced by estimations (·)∗, which are
known from the previous iteration. The implicit field that is solved for is rewritten as (·)∗∗.
After solving the equation, the estimation (·)∗ is updated with the solution (·)∗∗. This
iterative and segregated solution approach will converge the quantities (·)∗, (·)∗∗ → (·)n+1.
Note that the Hc matrix and the Bvc vector also contain estimates. Using the momentum
equation (4.18) and estimating all implicit non-velocity quantities yields the so-called
momentum predictor equation (4.27) to calculate the velocity v. As this equation is
computationally expensive to evaluate, it is usually evaluated only once or only in outer
loop iterations. Therefore there is another equation for the velocity v. By using estimates
for all non-diagonal entries of the momentum predictor equation, the explicit velocity
update equation (4.29) is formulated, which is easy to compute. For the pressure p, all
implicit non-pressure quantities are replaced by estimations in the equation (4.26). This
yields the final pressure equation (4.28), a discrete Poisson equation, which holds the
discrete maxima principle and converges if the r.h.s. is negative [19]. It is used to calculate
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the pressure field for the velocity to satisfy continuity. Finally, the linearized LS advection
equation (4.16) is used to update the LS field ψ with the equation (4.30).

Momentum predictor

v∗∗
c +Hc[v

∗∗] = −Dc(∇p)∗c + Dvc(fΣ)
∗
c + Bvc (4.27)

Pressure equation

−
∑︂
f

Dvf (∇p)
∗∗
f · Sf =

∑︂
f

Hf [v
∗] · Sf −

∑︂
f

Dvf (fΣ)
∗
f · Sf −

∑︂
f

Bvf · Sf (4.28)

Velocity update
v∗∗
c = −Hc[v

∗]− Dc(∇p)∗c + Dvc(fΣ)
∗
c + Bvc (4.29)

Level Set equation
ψ∗∗
c − ψnc
δt

+
∑︂
f

F ∗
f ψ

∗∗
f = 0 (4.30)

These are the essential equations for the PISO-like segregated solution algorithm developed
in this work. The concrete algorithm is described in chapter 5.2.

4.3. Surface tension force

In this section the importance of the surface tension force in the solution algorithm is
discussed. Starting with a short overview of existing surface tension force models, concept
of a force balanced discretization is explained and the evaluation of the interface mean
curvature is discussed.

4.3.1. Surface tension force models

CSF model

As mentioned in section 2.1, the initial model for the surface tension force fΣ in the
momentum equation is the CSF model proposed by Brackbill et al. [4] and is defined as

fΣ = σκΣδΣnΣ (4.31)
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To compute fΣ, Brackbill et al. approximated δΣnΣ ≈ −∇α. This regularizes the singular
source term fΣ by spreading the force over a small band of cells.

Extended CSF model

The extended semi implicit CSF model by Hysing [24] calculates fΣ as

fn+1
Σ = σ(κΣ(−∇α))n + δt σ(∆Σv)

n+1∇α (4.32)

with the Laplace-Beltrami operator (surface Laplacian) ∆Σ, an explicit interface operator
which is naturally not applicable for LS methods.

Integral model

The integral or tensile model was proposed by Tryggvason et al. [77] for FT methods and
requires an explicit interface representation. It avoids the need to calculate curvature,
which involves higher order derivatives and is generally not as accurate. For LS methods
this model is not straightforward, since no explicit interface representation naturally exists.
Assuming that an explicit representation for Σ(t) is available, then the integral model
calculates the surface tension of a cell Ωc as∫︂

Ωc

fΣ dV =

∮︂
∂Ωc∩Σ(t)

σt× nΣds, (4.33)

where t is a tangential vector of the intersection and s is the arc length of the intersection
curve ∂Ωc ∩ Σ(t).

4.3.2. Concept of force balance

To reduce parasitic currents, Francois et al. [16] introduced the concept of force-balanced
discretization. Considering the case of a stationary droplet without impact of gravity, the
mean interface curvature κΣ becomes constant and the continuous momentum equation
(4.2) with the CSF model (equation (4.31)) for the surface tension force fΣ reduces to

∇p = σκΣδΣnΣ. (4.34)
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It states that the pressure force is equal to the surface tension force for a stationary case.
If the discretized system inherits this property, the discretization and the schemes are
considered to be force balanced. The discrete pressure equation (4.28) in the case of the
stationary droplet reduces to∑︂

f

(∇p)f · nf =
∑︂
f

(fΣ)f · nf . (4.35)

With the CSF model and the approximation δΣnΣ ≈ −∇α by Brackbill et al. [4], the
equation is written as ∑︂

f

(∇p)f · nf =
∑︂
f

σκΣ(−∇α)f · nf . (4.36)

For a force balanced discretization, the approximation (−∇α)f ·nf ≈ (−∇α)f ·nf is used
and the momentum equation can be written as∑︂

f

(∇p)f · nf − σκΣ(−∇α)f · nf = 0. (4.37)

If the pressure and phase indicator field uses the same surface normal gradient scheme
(∇(·))f · nf , error cancellation can partially occur and the discrete momentum can be
written as ∑︂

f

((∇p)f − σκΣ(−∇α)f ) · nf = 0 (4.38)

or
∇c · (∇p− σκΣ(−∇α)) = 0. (4.39)

It states that the pressure force minus the surface tension force is cell-wise divergence
free and no artificial force is generated. With that a force balanced discretization is given
and parasitic currents are reduced to machine tolerance. [10, 55]

However, it is still problematic if the assumption of the CSF model, that −∇α and nΣ

are aligned, does not hold. In such cases, forces are not balanced, and parasitic currents
occur.

4.3.3. Interface mean curvature

Using the CSF model for the surfaced tension, evaluating the interface mean curvature
κΣ has several difficulties, which are described in the following.
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Computing mean curvature

By definition, equation (3.8), the interface mean curvature is defined only at the interface,
but the FVM generally works with cell-centred values, and mean curvature is needed at
points not on the interface. So how to calculate the mean curvature in cell centroids that
do not coincide with the interface?

The interface mean curvature of the nearest point on the interface mapped to the current
position is required. At least for interface cells where ∇α ̸= 0 holds. Assuming that the
LS field satisfies the signed distance property near the interface, equation (3.11), then
the LS normal field

n(x, t) =
∇ψ(x, t)
∥∇ψ(x, t)∥2

, x ∈ Ω, (4.40)

at a point xc is equal to the interface normal nΣ of the nearest point on the interface.
Thus the surface normal nΣ can be projected in the normal direction into the domain.
This defines a global mean curvature as

κ = −∇ · n, x ∈ Ω. (4.41)

With that, cell centred mean curvature κc can be computed as

κc =
1

|Ωc|

∫︂
Ωc

κ dV = − 1

|Ωc|

∫︂
Ωc

∇ · n dV = − 1

|Ωc|
∑︂
f

nf · Sf (4.42)

Constant mean curvature

The problem with this global mean curvature field is that it is not constant in the nΣ

direction, as assumed for a force-balanced discretization without parasitic currents. As
reported by Denner and vanWachem [11], parasitic currents are quadratically proportional
to the mean curvature, making this a crucial problem. For demonstration, a LS field of a
simple sphere is considered. The mean curvature of a sphere is given by κsphere = 2

R . So
the mean curvature at x /∈ Σ is not equal to the mean curvature at x ∈ Σ. Thus the mean
curvature is not generally constant in the normal direction and Laplace equilibrium is not
guaranteed [55]. Correction formulas have been proposed to avoid incorrect evaluation of
themean curvature. Kang et al. [28] proposed a distance-weighted curvature interpolation

κf =
κOf
|ψNf

|+ κNf
|ψOf

|
|ψNf

|+ |ψOf
|

, (4.43)
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with a near constant curvature approximation in the case of a spherical interface [10].
Tolle et al. [75] proposed a mean curvature correction based on the assumption of local
spherical curvature

κc, corrected = 2

(︃
2

κc
+ ψc

)︃−1

. (4.44)

Accuracy

Furthermore, mean curvature evaluation becomes even more problematic if the LS field
and n are deteriorated. Since the mean curvature is evaluated with the normal field n,
which is evaluated with the LS field, the mean curvature is very sensitive to this. Coquerelle
and Glockner [10] showed that with each derivative the order of convergence decreases
by one. Thus, if the normal field n is of order O(hp), the cell-centred curvature κc will be
of convergence order O(hp−1). Therefore, high accuracy requirements are placed on the
normal field n and the LS field ψ.
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5. Developments and implementations

This chapter describes the main developments of this work and their implementations. The
numerical method is implemented in OpenFOAM. The source code repository can be found
at https://github.com/leia-openfoam/leia and is also archived at https://
doi.org/10.5281/zenodo.10721725. This chapter covers the architecture of the
most important classes, for details please refer to the source code documentation at
https://leia-openfoam.github.io/leia/.

5.1. Signed Distance Preserving Level Set Method

This section describes the implementation of the SDPLS method in OpenFOAM. Through-
out this work, different variants and discretizations of the source term have been tested.
To cope with all the different variants and combinations, OpenFOAM offers its Runtime
Type Selection (RTS) mechanism. It allows the user to specify his model selection in con-
figuration files, here called dictionary files. The correct model is then selected at runtime,
allowing subroutines being switched without recompilation. The design pattern used is
OpenFOAM specific, but comes close to the factory method pattern. The model selection
method, here called selector, is implemented in the base class of the model hierarchy.
Thus, all hierarchy base classes have the special role of providing the RTS infrastructure
and other shared functionality, while the inherited classes mostly just overload specific
member functions.
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5.1.1. sdplsSource

sdplsSource

The base class sdplsSource is the root for the model hierarchy of the SDPLS method
by Fricke et al. [17]. It is the only class with which the user of the SDPLS method
should interact. The SDPLS method extends the standard LS advection equation with the
SDPLS source term. This is done by extending the r.h.s. of the LS equation in the solver
application by calling

fvmsdplsSource(const volScalarField& psi, const volVectorField& U)

on the RTS selected model and passing a reference to the LS field psi and the velocity field
U. It returns a tmp<fvScalarMatrix> object for integration into the LS equation. This
class hierarchy is responsible for providing implementations for the formula of non-linear
SDPLS source terms. It is assumed that all SDPLS source term implementation will have
the following structure and evaluate the source in cell Ωc as

SSDPLS(ψ
n+1) = fnl(ψ

n)ψn+1
c (5.1)

with the known solution field ψn at time tn, some non-linear scalar function fnl(ψ
n)

and ψn+1
c the unknown solution value in cell Ωc at time tn+1. All inherited classes

are responsible for implementing the explicit evaluation of the non-linear function by
overloading the member function nonLinearPart(). This base class implements the
case of an inactive source term fnl = 0. The discretization is done separately by the class
hierarchy discretization, which is related via the strategy pattern. Furthermore, this
class has a strategy for a Mollifier, which restricts the active source term to a narrow
band around the interface.

sdplsR

The class sdplsR implements the concrete SDPLS source term formula proposed by Fricke
et al. [17]. As described in the base class sdplsSource, the explicit evaluation of the
SDPLS source term instance is implemented in the member function nonLinearPart()
as

fnl,R(ψ
n) =

⟨︃
(∇v)c

(∇ψ)nc
∥(∇ψ)nc ∥2

,
(∇ψ)nc
∥(∇ψ)nc ∥2

⟩︃
, (5.2)

with the use of the gradient schemes specified in the fvSchemes dictionary.
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5.1.2. discretization

discretization

The base class discretization forms the root for the discretization hierarchy of the
SDPLS source term implemented in sdplsSource. For the discretization, the non-linear
SDPLS source term SSDPLS is linearized as

SSDPLS(ψ
n+1) ≈ Sc + Spψ

n+1
c , (5.3)

where Sc is a constant and Sp is the proportionality constant for the linear part. Initializing
the discretization and returning the tmp<fvScalarMatrix> is done by the public
method

discretize(nonLinearPart, psi),

which takes the nonLinearPart and the LS field psi from the source term implementing
the class sdplsSource. Inheriting classes are responsible for implementing Sc() for Sc
and Sp() for Sp, which are called by discretize(). This base class implements the
case of no discretization with

SnoSource(ψ
n+1) = 0. (5.4)

discretization

explicitDiscretization simpleLinearImplicit strictNegativeSpLinearImplicit

Figure 5.1.: Inheritance diagram for discretization

Three other discretization for source term are implemented, see figure 5.1.
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explicitDiscretization

The class explicitDiscretization implements the explicit discretization of the
source term. The linearization constants are calculated as

Sexplicit, c = fnl(ψ
n)ψnc

Sexplicit, p = 0
(5.5)

where the constant Sc explicitly evaluates the entire SDPLS source term. With this, the
explicit source is written as

Sexplicit(ψ
n+1) = fnl(ψ

n)ψnc (5.6)

Without any implicit part, this discretized source term only contributes to the r.h.s. of the
resulting algebraic linear system.

simpleLinearImplicit

The class simpleLinearImplicitScheme implements an implicit discretization of
the source term in the most simplest way. The linearization constants are calculated as

SsimpleLinearImplicit, c = 0

SsimpleLinearImplicit, p = fnl(ψ
n),

(5.7)

resulting in the simpleLinearImplicit source

SsimpleLinearImplicit(ψ
n+1) = fnl(ψ

n)ψn+1
c . (5.8)

This is the most accurate linearization as the approximation fits the tangent of the relation
SSDPLS(ψ

n+1) ∼ ψn+1 [53], see the sdplsSource equation (5.1).

strictNegativeSpLinearImplicitScheme

The class strictNegativeSpLinearImplicitScheme implements an implicit dis-
cretization of the source term that ensures contributions to the diagonal dominance of the
resulting algebraic linear system. The linearization constants are computed as

SstrictNegativeSpLinearImplicit, c = max(fnl(ψn), 0)ψnc
SstrictNegativeSpLinearImplicit, p = min(fnl(ψn), 0),

(5.9)
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which ensures that the constant Sp ≤ 0 for all cells [53]. The resulting source term,
written as

SstrictNegativeSpLinearImplicit(ψ
n+1) = max(fnl(ψn), 0)ψnc +min(fnl(ψn), 0)ψn+1

c , (5.10)

thus switches between explicit and implicit discretization cell by cell depending on the sign
of fnl(ψn). This addresses the problem that unconditional implicit treatment can cause
the solution to diverge. The reason is that a positive Sp reduces the diagonal coefficient in
the assembled linear system. This harms the diagonal dominance of the matrix, which
then may lose its M-matrix and discrete stability property [19].

5.2. Segregated solution algorithm for two-phase flows

This section introduces the LS two-phase flow solver developed for this work. The goal
of this solver is to compute a discrete converged solution for the governing non-linear
PDE system, specifically the equations (4.1)-(4.6). The solution is obtained by iteratively
solving the derived equations described in chapter 4.2.4 in a segregated manner similar
to the PISO algorithm of Issa [25]. The pseudo code for the calculation of a time step
is provided in the algorithm 1. The calculation of the solution values of the current
time step tn+1 starts by setting the estimates (·)∗ with the solutions of the previous time
step. The outer loop (O) evolves the interface by solving the LS advection equation
(4.30), computes the phase indicator α, the density field ρ and the viscosity field µ. It
calculates the quantities Hc, Dvc and Bvc and updates the velocity field by solving the
momentum predictor equation (4.27), if specified. For consistency, all r.h.s. quantities
are reconstructed from the face-centred fields of the pressure equation 4.28. Within the
inner loop (I) the face centred quantities Hf [v

∗], Dvf , (fΣ)
∗
f , Bvf are calculated. Then,

within the non-orthogonal correction loop (N), the pressure equation (4.28) is solved. At
each iteration, the explicit cross-diffusion part of the Laplace term is updated. On the last
non-orthogonal iteration the velocity field is updated with the equation (4.29).
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Algorithm 1 Pseudo code of the segregated solution algorithm. The
operator ’:=’ denotes assignment.
1: v∗ := vn

2: p∗ := pn

3: ψ∗ := ψn

4: F ∗ := Fn

5: O := 0
6: while O ≤ Omax do
7: Solve Level Set equation (4.30) and ψ∗ := ψ∗∗

8: Compute phase indicator α
9: Compute density ρ (equation (4.12) and viscosity µ (equation 4.13)
10: Compute Hc, Dv

c and Bv
c

11: if predict-momentum == True then
12: Solve momentum predictor equation 4.27 and v∗ := v∗∗

13: end if
14: I := 0
15: while I ≤ Imax do
16: Compute Hf [v

∗], Dv
f , (fΣ)

∗
f and Bv

f

17: N := 0
18: while N ≤ Nmax do
19: Solve pressure equation (4.28) and p∗ := p∗∗

20: if N == Nmax then
21: Solve explicit velocity update equation (4.29) and v∗ := v∗∗

22: Update volumetric fluxes F ∗
f

23: end if
24: N := N + 1
25: end while
26: I := I + 1
27: end while
28: O := O + 1
29: end while
30: vn+1 := v∗

31: pn+1 := p∗

32: ψn+1 := ψ∗

33: Fn+1 := F ∗

47



5.3. Surface tension force

This section describes the implemented surface tension force classes. All implementations
are based on the CSF model of Brackbill et al. [4] and differ in their computing strategy.

surfaceTensionForce

The abstract base class surfaceTensionForce is the root for surface tension modelling.
It provides the purely abstract method surfaceTensionForce(), which is responsible
for calculating and returning (fΣ)f · nf of type tmp<surfaceScalarField>. This
surface normal gradient is used in the pressure equation (4.28).

The inheriting classes calculate the surface tension force based on the CSF model, using the
approximation δΣnΣ ≈ −∇α by Brackbill et al. [4] and the approximation (−∇α)f . ·nf ≈
(−∇α)f · nf for a force balanced discretization, which gives

(fΣ)f · nf = σκΣ(−∇α)f · nf . (5.11)

Since the mean curvature κΣ is not globally defined, it is replaced by the surface field κf .
This results in

(fΣ)f · nf = σκf (−∇α)f · nf . (5.12)

The two concrete classes presented below differ in the calculation of κf .

divGradPsiSnGradAlpha

The concrete class divGradPsiSnGradAlpha implements the calculation of the surface
tension force, equation (5.12) with the definition of the global mean curvature field,
equation (4.41) and is expressed as(︂

(fΣ)f · nf
)︂
divGradPsiSnGradAlpha

= σ

(︃
∇c ·

(∇ψ)c
∥(∇ψ)c∥2

)︃
f

(∇α)f · nf . (5.13)
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traceGradGradPsiSnGradAlpha

The concrete class traceGradGradPsiSnGradAlpha calculates the surface tension
similarly to divGradPsiSnGradAlpha, but instead of using the discrete divergence
operator ∇c · (·), it uses the trace of the gradient tr(∇(·))c to calculate the mean curvature.
The calculation is expressed as(︂

(fΣ)f · nf
)︂
traceGradGradPsiSnGradAlpha

= σ tr
(︃

(∇∇ψ)c
∥(∇ψ)c∥2

)︃
f

(∇α)f · nf . (5.14)

5.4. Workflow for running parameter studies

To produce the results of chapter 6, the simulation of parameter studies and the handling of
post-processing data is done using the workflow and scripts presented in this section. This
section can be skipped as it is not necessary for either the numerics or the understanding
of the method. Nevertheless, it is not trivial to work effectively with large amounts of
simulation cases and files in general. For this reason, and for reproducibility, it is worth
documenting the workflow used.

The goal of the workflow is to generate a study database CSV file containing relevant
postprocessing data for all cases in a study, mapping this data to their case name and study
parameters. The workflow includes creating, editing, initialising, running, monitoring
and postprocessing the study. The workflow is divided into the following steps of

1. creating a study directory with study_0_create.py,

2. editing the default files,

3. initialising the study with study_1_init.py,

4. running the study with study_2_run_sbatch.py,

5. monitoring the running study and

6. postprocessing the study with study_3_postprocess.py.

The Python scripts used are part of a pip installable Python package. It is a submod-
ule within the source code repository at https://github.com/leia-openfoam/
leia, but can also be found separately at https://github.com/jnj-reitzel/
pyFoamStudy.
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1. Creating a study directory with study_0_create.py

Having an OpenFOAM case template CASE, which corresponds to the standard pyFoam
template format, and a pyFoam parameter file PARAMFILE, the script study_0_create.py
can be called, passing them and a study name STUDYNAME. This script creates a direc-
tory and copies the template case, parameter file into it. This keeps the template and
parameters with the studies and documents the settings. The scripts also create the file
<STUDYDIR>.info to store information and meta data about the study. See the 5.1
listing for the Command Line Interface (CLI) of the script.

usage: study_0_create.py [-h] -c CASE -p PARAMFILE -s STUDYNAME

Creates the directory study_<STUDYNAME> for a pyFoam study, copies the
template case, parameter files into it and

creates the study_<STUDYNAME>.info file with some meta data in it.

options:
-h, --help show this help message and exit
-c CASE, --case CASE Template case
-p PARAMFILE, --parameter-file PARAMFILE

PyFoam parameter file
-s STUDYNAME, --study-name STUDYNAME

Name of the parameter study

Listing 5.1: CLI of study_0_create_empty.py

2. Editing the default files

In the second step, the user can manually edit the template case and parameter file within
the study directory. This leaves the original template case untouched and does not sneak
in temporary settings between the default template settings that may be forgotten to
revert.

3. Initialising the study with study_1_init.py

The third step is to instantiate the concrete simulation cases from the template using the
script study_1_init.py. It is basically a wrapper around FoamRunParameterVariation,
but also creates some additional files like <STUDYDIR>.cases, a file listing all concrete

50



cases, and <STUDYDIR>.json, a Python readable dictionary file mapping the concrete
cases to their concrete parameters. Only the path to the study directory needs to be
passed, other relevant information for the script is read from the <STUDYDIR>.info file.
The script ends by appending information to the <STUDYDIR>.info file. The listing 5.2
shows the CLI of the script.

usage: study_1_init.py [-h] STUDYDIR

Initialises a parameter study, basically using `pyFoamRunParameterVariation.
py`.

The script takes the study directory STUDYDIR created by `study_0_create.py`
and generates concrete simulation cases and some meta files.
No meshes are generated, only the pyFoam instantiations with some extra meta

data files.

positional arguments:
STUDYDIR Study directory with the template case, parameter file and the
info file inside.

options:
-h, --help show this help message and exit

Listing 5.2: CLI of study_1_init.py

4. Running the study with study_2_run_sbatch.py

The fourth step is to run the study. More specifically, the study cases are submitted to
the Slurm job scheduler using the study_2_run_sbatch.py script. Alternatively, the
sibling script study_2_run_foamJob.py can be used to run the study locally with
foamJob. The script is passed the study directory STUDYDIR and the relative path within
a case to slurm or shell script specifying preprocessing, execution and postprocessing.
The script reads the cases to run from the <STUDYDIR>.cases file, which is known
from reading the <STUDYDIR>.info file. It is recommended to have the ALLRUN script
inside the template case, and thus in every case instance, to have self-documenting cases
without the need to call local scripts from outside. See the listing 5.3 for the CLI of the
script study_2_run_sbatch.py.
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usage: study_2_run_sbatch.py [-h] STUDYDIR ALLRUN

Submitts the simulations of the STUDYDIR study to Slurm using `sbatch`.
It submits the specified Slurm ALLRUN script for all cases listed in <

STUDYDIR>.cases.
The ALLRUN script is in each case.

positional arguments:
STUDYDIR Study directory with the template case, parameter file and the
info file inside.

ALLRUN Slurm script that will be submitted and contains preprocessing,
mesh building and execution.

options:
-h, --help show this help message and exit

Listing 5.3: CLI of study_2_run_sbatch.py

5. Monitoring the running study

Monitoring the progress of the simulations, or whether the study has run successfully, is
important for the effective management of many studies. Therefore, it is mentioned that
the Python package provides the scripts study_print-latestTime.py, which lists
the latest time directories of all cases, and study_print-status.py, which infers the
status of all cases in the study. Otherwise, it would be cumbersome to verify the success
of a study or to identify cases with errors.

6. Postprocessing the study with study_3_postprocess.py

Once all study simulations have run successfully, post-processing is performed using the
script study_3_postprocess.py. This script collects relevant postprocessing data
from CSV files in the cases and metadata of the study and builds the study database CSV
file. The study directory STUDYDIR is passed to the script and the remaining information
is retrieved from the information file <STUDYDIR>.info. The CLI interface is shown in
the listing 5.4.
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usage: study_3_postprocess.py [-h] [--skip-convergence] [-n DATABASE]
STUDYDIR

Script merges and concatenates case specific ['leiaLevelSetFoam.csv', '
gradPsiError.csv', 'TVerror.csv'] CSV files into one large database CSV
file,

lists the latest times of all cases and
if the study is investigating refinement, the convergence rates of all the

error properties are calculated and added to the CSV database file.

Note:
Run this script from within the directory where the actual study cases reside

.

positional arguments:
STUDYDIR Study directory with the template case, parameter
file and the info file inside.

options:
-h, --help show this help message and exit
--skip-convergence Skip calculation of convergence rates
-n DATABASE, --name DATABASE

Provide a different database CSV file name. Default:
<STUDYDIR>_database.csv

Listing 5.4: CLI of study_3_postprocess.py

Miscellaneous scripts

The Python package contains other scripts that are not part of the workflow, but support
working with studies and database CSV files. All plots in this work are created using
the database_plot.py script, which takes a study database CSV file and has several
options for manipulation. The script database_concat.py concatenates two or more
study database CSV files if they have the same columns, otherwise it throws an error. If
one wants to concatenate study database CSV files that do not have matching columns,
the following two scripts are useful. The database_add-column.py script can add a
column filled with a specified value to a study database CSV file. This allows unlisted
study settings to be added to a study database CSV file to match the columns of another
study database CSV file. The database_filter.py script can be used to filter out rows
or columns in study database CSV files. The last important script, study_rsync.py, is
a wrapper around rsync with settings to synchronise study directories without concrete
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cases. This is useful for copying the study directory with meta and postprocessing data
from one machine to another, or for archiving purposes.
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6. Numerical results

This chapter presents numerical results for various simulations, focusing on pure advection
using the LS method on different mesh types, pure advection using the SDPLS method,
and two-phase flow simulations using the developed solver for the unstructured Finite
Volume Level Set method.

Section 6.1 provides details on the numerical settings, evaluated error quantities and
test cases considered in this study. Section 6.2 investigates the performance of different
advection schemes for pure LS advection over different test cases and mesh types. The
results for the SDPLS method are presented in section 6.3. Finally, the last section 6.4
presents the results for the stationary droplet test case with the developed two-phase flow
solver.

6.1. Setups

This section shows numerical setups, test cases and error quantities. All test cases share
the same LS field initialisation. They all start with a spherical droplet, initialised with the
following implicit equation

ψ(x, 0) = ∥x− x0∥2 −R. (6.1)

Furthermore, all cases use a zero gradient boundary condition for the LS field, a time step
size δt satisfying CFL = 0.3 and the abrupt geometrical phase indicator presented by us
[40]. Most simulations are performed on unstructured orthogonal hexahedral meshes
created with the blockMesh application from OpenFOAM. Perturbed hexahedrons and
polyhedrons are used as non-optimal meshes. Perturbed hexahedral meshes have an
average mesh non-orthogonality of 4.2 °, a maximum mesh non-orthogonality of 14.2 °
and a maximum skewness of 0.17. The used polyhedral meshes are created with the
OpenFOAM sub-module cfmesh. For all pure LS advection test cases, the Crank-Nicolson
method is used to discretize the temporal term. Advection schemes are varied.
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6.1.1. Test cases

2D contact line

In the 2D contact line advection test case used by Fricke et al. [17], a droplet (part of
a sphere) is placed at the wall, similar to the sketch in figure 2.1. The implicit sphere,
equation (6.1), with radius 0.3 is placed with its centre at (0.5 − 0.15) inside a domain of
1× 0.5. The velocity field is time-periodic and is given by

v(t, x) = cos
(︃
πt

τ

)︃(︃
v0 + c1x+ c2y

−c1y

)︃
(6.2)

with v0 = −0.2, c1 = 0.1, c2 = −2, τ = 0.4 and tend = 0.8. The test case was used by
Fricke et al. to verify their SDPLS method. As in the original setup, a time step size of δt
is used to satisfy CFL = 0.5. The smooth Heaviside phase indication method is used in
this case. Figure 6.1 shows the LS field with a blue—red colour map, the interface at the
zero LS as the black line and the velocity field with the grey arrows at time t = 0.

Figure 6.1.: LS (psi) and velocity field in the 2D contact line case. The black contour
marks the interface. The grey arrows point in the direction of the velocity

field where the size indicates the magnitude.
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3D rotation

The 3D rotation advection test case is an extension of the canonical 2D rotation advection
test case. Here a sphere with radius 0.15 is placed at (0.5 0.5 0.75) with its centre inside a
domain of 1× 1× 1. A stationary velocity field is given by

v(x) = ω × (x− x0) with ω =

⎛⎝1
0
0

⎞⎠ , x0 =

⎛⎝0.5
0.5
0.5

⎞⎠ . (6.3)

This field rotates the eccentrically placed droplet around the domain centre x0 without
any deformation. The simulation ends at tend = 2π when the droplet has reached its
initial position. Figure 6.2 shows the domain of the text case with the droplet in blue at
different times. The LS field at time t = 0 is visualised by the blue–red colour map and
the stationary velocity field by the black arrows.

Figure 6.2.: 3D rotation LS field (psi) and velocity field (black arrows)

3D shear

The 3D shear advection test case introduced by Liovic et al. [33] is a three dimensional
extension of the 2D shear test case originally introduced by Leveque [32]. A sphere of
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radius 0.15 is placed with its centre at (0.35 0.75 0.25) within a domain of 1× 1× 2. The
velocity field consists of a vortex in the xy-plane with a parabolic channel flow in the
z-dimension and is given by the following equation

v(x, t) = cos
(︃
πt

τ

)︃⎛⎝sin(2πy) sin2(πx)
sin(2πx) sin2(πy)
Umax

(︁
1− r

R

)︁2
⎞⎠ . (6.4)

The velocity field, which oscillates with time t, has a maximum velocity of Umax = 1 and
a period duration of τ = 3, which is also the end time tend = 3. Figure 6.3 shows the
deformed droplet at different times for the 3D shear test case.

Figure 6.3.: 3D shear test case

3D deformation

The 3D deformation field advection test case proposed by LeVeque [32] combines a
deformation in the xy plane with one in the xz plane. Within a domain of 1 × 1 × 1 a
sphere of radius 0.15 is placed with its centre at (0.35 0.35 0.35). The velocity field is
given by

v(t, x) = cos
(︃
πt

τ

)︃⎛⎝2 sin(2πy) sin2(πx) sin(2πz)
− sin(2πx) sin2(πy) sin(2πz)
− sin(2πx) sin(2πy) sin2(πz)

⎞⎠ , (6.5)
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with τ = 3 and tend = 3. The field entrains the sphere through two rotating vortices,
creating a stretched surface. Figure 6.4 shows the deformed droplet at time t = 0.9 for
the 3D deformation test case.

Figure 6.4.: Spherical droplet under 3D deformation velocity field at t = 0.9

3D stationary droplet

The 3D stationary droplet test case is a two-phase flow test case and is used to evaluate
the performance of the LS NS coupling and surface tension force models. A spherical
droplet of radius 0.001 is initialized at the centre of a 0.01 × 0.01 × 0.01 domain. The
velocity is initialized uniformly to zero within the domain and zero gradient boundary
conditions are used. The dynamic pressure is uniformly initialized to zero and fixed at the
boundaries. Although the solution to this two-phase flow case is stationary, this test case
is very challenging. Violations of the discrete force balance, as presented in chapter 4.3.2,
become visible as so-called parasitic currents. For quasi-stationary flows it is crucial to
avoid parasitic currents as they can be large relative to the flow velocities and thus have
a huge impact on the solution. Parasitic currents in the stationary droplet test case are
measured by the magnitude of the maximum velocity max(|v|) in the flow field.
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6.1.2. Error quantities

The following error quantities are evaluated with the test cases. The geometrical error Eg,
defined in equation (6.6), compares the predicted volume averaged phase indicator field
at the end time αc(tend) with the correct known field αc(t0). The correct field is known for
simple test cases where the end state is equal to the initial state, such as the 3D rotation
test case, or for cases with an oscillating velocity field that deforms a droplet back and
forth into the initial state. The geometrical error can be interpreted as how much of the
characteristic phase is misplaced.

Eg =
∑︂
c∈C
|Ωc||αc(tend)− αc(t0)| (6.6)

The relative volume conservation error Ev, defined in equation (6.7), is a measure of the
relative volume loss compared to the initial state.

Ev(t) =

⃓⃓∑︁
c∈C αc(t)|Ωc| −

∑︁
c∈C αc(t

0)|Ωc|
⃓⃓⃓⃓∑︁

c∈C αc(t
0)|Ωc|

⃓⃓ (6.7)

The signed distance error E∇ψ, defined in equation (6.8), measures how much the LS field
at cells c ∈ Cnarrow within a narrow band Cnarrow around the interface differs from the
signed distance property, equation (3.11). The chosen narrow band has a width of three
cells, consisting of the cell intersected by the interface and its immediate neighbours.

E∇ψ(t) =
1

NCnarrow

∑︂
c∈Cnarrow

(|∥(∇ψ)c(t)∥2 − 1|) (6.8)

The following sections show the convergence of these error quantities over different mesh
resolutions. A mesh resolution is represented by the characteristic grid spacing h, which
is the mean value of the distances between centroids and is defined as

h =
1

Nf

∑︂
f∈F
∥xNf

− xOf
∥2. (6.9)
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6.2. Advection schemes

In this section a comprehensive evaluation of different advection schemes for LS advection
with the equation 3.5 is performed. The discretization of the advection term of any PDE
is a major challenge in CFD. It greatly affects the stability and accuracy of the method.
The LS advection equation is a pure advection equation without a diffusive term, so the
advection scheme has an even more important role and the following preliminary studies
on advection schemes are carried out.

The following studies include the standard second order accurate linear scheme, the
upwind biased second order accurate LinearUpwind scheme and first order upwind scheme.
In addition, the TVD schemes vanLeer, OSPRE, SuperBee and vanAlbada from the group
of TVD schemes are tested. Similarly, Gamma 1, MUSCL, Minmod, SFCD and UMIST are
tested from the group of NVD schemes. The 3D rotation test case is examined because
it does not use an oscillating velocity field that might compensate for advection errors.
In addition, the rotationally symmetric velocity field is a challenge for any mesh type as
the face normals are generally not aligned with the local velocity field. The oscillating
3D deformation and 3D shear test cases are also investigated as examples of complex
flow fields and deformations. The following plots mainly show the convergence of the
geometrical errors, as the geometrical error is more sensitive than the volume conservation
error and thus better captures the accuracy of an advection scheme.
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Figure 6.5.: Geometrical errors of the advection schemes with the LS method for the 3D
rotation test case on hexahedral meshes

Starting with the 3D rotation case, figures 6.5, 6.6 and 6.7 show the convergence of the
geometrical error Eg, equation (6.6), over the characteristic grid spacing h of all advection
schemes on hexahedral, perturbed hexahedral and polyhedral meshes. On all mesh types,
the LinearUpwind and MUSCL advection schemes show the best geometrical errors and
second order convergence. The prominent linear scheme performs second worst. It has
an error of 3.9 × 10−4 at the finest resolution and shows a convergence order of only
1.5. Simulations with the linear, Gamma1 and SFCD schemes even crashed on polyhedral
meshes. The volume errors only confirm these results and are therefore included in the
appendix.

3D deformation

For the 3D deformation test case on a hexahedral mesh, it can be seen in figure 6.8 that
the linear scheme dominates all other schemes by more than three orders of magnitude
and shows second order convergence. It is clearly the most accurate scheme for this case.
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Figure 6.6.: Geometrical errors of the advection schemes with the LS method for the 3D
rotation test case on perturbed hexahedral meshes

As the lines of the other schemes are not clearly visible, figure 6.9 shows the same plot
but with the linear scheme filtered out. Then the Superbee, followed by MUSCL and
LinearUpwind schemes perform best. Unlike the case of 3D rotation, the convergence
order of MUSCL and LinearUpwind is not second order, but of the order of ≈ 0.75. Similar
performance of the linear scheme can be seen on perturbed hexahedral meshes, figure

This clear dominance of the linear scheme is surprising as it clearly failed for the geomet-
rical and volume conservation error in the 3D rotation test case. The evaluation of the
geometrical error is done at the last time step tend, where the state should correspond to
the initial state. Unlike the 3D rotation test case, the 3D deformation test case ensures
this by reversing the flow field. This oscillating velocity field can cause error cancellation
and thus affect the geometrical error. To verify the performance of the linear scheme,
its volume conservation error Ev is discussed next. The volume conservation error is
evaluated over all times. It is therefore not influenced by error cancellation due to an
oscillating velocity field for all times t ≤ τ/2. Figure 6.12 shows the volume conservation
error Ev over all times for the 3D deformation test case with different advection schemes
on hexahedral meshes with the finest resolution of 128 cells per dimension leading to
h = 7.8× 10−3. It can be seen that with the linear advection scheme, error cancellation
occurs after time t = τ/2, but it also shows the best volume conservation at all times
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Figure 6.7.: Geometrical errors of the advection schemes with the LS method for the 3D
rotation test case on polyhedral meshes

before that. Convergence plots for the volume conservation error for all mesh types are
in the appendix. They all show that the linear scheme conserves volume the best and
indeed performs well with the 3D deformation test case. This is not in contradiction
with the literature, which states that the linear scheme produces oscillations near the
interface [45, 3, 83]. Figure 6.13 shows the signed distance errors of all schemes over all
resolutions. Despite the high accuracy of the geometrical and volume conservation errors,
the linear scheme has the worst signed distance errors. At the finest mesh resolution its
signed distance error is 9 and is four error points above LinearUpwind, probably due to
oscillations with the linear scheme.

3D shear

For the 3D shear test case with hexahedral meshes, figure 6.14, the linear scheme also
shows the lowest geometrical errors and second order convergence. LinearUpwind shows
only a convergence order of 1.75. Volume conservation is also led by the linear scheme.
Its convergence plot can be found in the appendix.
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Figure 6.8.: Geometrical errors of the advection schemes with the LS method for the 3D
deformation test case on hexahedral meshes
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Figure 6.9.: Geometrical errors of the advection schemes without linear with the LS
method for the 3D deformation test case on hexahedral meshes
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Figure 6.10.: Geometrical errors of the advection schemes with the LS method for the 3D
deformation test case on perturbed hexahedral meshes
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Figure 6.11.: Geometrical errors of the advection schemes with the LS method for the 3D
deformation test case on polyhedral meshes
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for the 3D deformation test case on polyhedral meshes
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Figure 6.13.: Signed distance errors of all advection schemes with the LS method for the
3D deformation test case on hexahedral meshes
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Figure 6.14.: Geometrical errors of best advection schemes with the LS method for the
3D shear test case on hexahedral meshes
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6.3. Signed Distance Preserving Level Set Method

In this section, the implemented SDPLS method is tested. The 2D contact line, 3D
deformation and 3D shear test cases are investigated with the linear or LinearUpwind
advection schemes, as they performed best for the LS advection.

6.3.1. Verification with Fricke et al.

In this subsection, the implemented SDPLS method is verified with the 2D contact line
test case by Fricke et al. [17].

Figure 6.15, compares the geometric error Eg for the SDPLS method and the plain LS
advection. The method variation is denoted by the strategy chosen for SDPLS_SOURCE.
The SDPLS method is denoted by R and the simple LS advection is denoted by noSource.
MOLLIFIER m1 enables the mollifier proposed by Fricke et al. to restrict the active
source term to the vicinity of the interface. For advection, the LinearUpwind scheme is
selected. The SDPLS source term is discretized with simpleLinearImplicit. It can be seen
that the LS method performs similarly with and without the SDPLS source term. Both
converge to second order, although the absolute error with the source term is slightly
worse. Comparing the signed distance error E∇ψ in figure 6.16 it can be seen that without
source term the signed distance is not conserved, but with source term it is conserved
with first order convergence. These results are in agreement with the geometric results,
namely contact line position, contact angle and curvature, and the signed distance results
of Fricke et al.

69



1.0e− 025.0e− 032.5e− 03
h in m

10−6

E
g

SDPLS SOURCE / MOLLIFIER

noSource / none

R / none

R / m1

second-order

first-order

2Dcontactline-periodic hex geometrical error Eg =
∑

c∈C |Ωc||αc(tend)− αc(t0)|

Figure 6.15.: Geometrical errors of the SDPLS method compared to noSource, the plain
LS method, with LinearUpwind for the 3D deformation test case on

hexahedral meshes
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Figure 6.16.: Signed distance errors of the SDPLS method compared to noSource, the
plain LS method, with LinearUpwind for the 3D deformation test case on

hexahedral meshes
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6.3.2. Different discretizations for the SDPLS source term

The studies presented in this section investigate the influence of the SDPLS source term
discretization on the SDPLS method and compare their geometrical errors Eg and signed
distance errors E∇ψ with those of the plain LS method for the more complex 3D deforma-
tion and 3D shear test cases.

3D deformation

Starting with the case of 3D deformation with LinearUpwind advection scheme, figure
6.17 shows the geometrical error Eg of the SDPLS method with different discretizations
and the plain LS method. The different discretizations are denoted by the strategy chosen
for SOURCE_SCHEME. It can be seen, that simpleLinearImplicit without a mollifier has
the lowest geometrical error, even better than noSource. Both, noSource and SDPLS
simpleLinearImplicit, show first order convergence.
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Figure 6.17.: Geometrical errors of different discretizations of the source term of the
SDPLS method with LinearUpwind for the 3D deformation test case on

hexahedral meshes

Figure 6.18 shows the signed distance error E∇ψ. The SDPLS method with discretization
simpleLinearImplicit without a mollifier, shows the best signed distance error of 0.3 with a
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convergence order of 0.2. All other cases show a divergence.
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Figure 6.18.: Signed distance errors of different discretizations of the source term of the
SDPLS method with LinearUpwind for the 3D deformation test case on

hexahedral meshes

The same comparison but with the linear advection scheme is shown next. Figure 6.19
shows the geometrical error Eg of different SDPLS source term discretizations for the 3D
deformation case. The plain LS shows the best geometrical error bymore than two orders of
magnitude at the finest resolution. The best SDPLS configurations are simpleLinearImplicit
and explicit with mollifier. Besides having a much larger geometrical error compared to
noSoure, the second order convergence is reduced to 0.8 for simpleLinearImplicit.

Figure 6.20 shows the signed distance error E∇ψ for this comparison. Here another SDPLS
configuration, strictNegativeSpLinearImplicit without mollifier, shows the best performance
compared to all other discretization and noSource. But it is still in the magnitude of 1 and
shows a slight divergence like all the other cases.

3D shear

The performance of different SDPLS source term discretization compared to the plain
LS method for the 3D shear test case is shown next. Starting with the study using the
LinearUpwind advection scheme, figure 6.21 shows the plain LS method with the best
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Figure 6.19.: Geometrical errors of different discretizations of the source term of the
SDPLS method with linear for the 3D deformation test case on hexahedral

meshes

geometrical error and an order of convergence of 1.9. Half an order of magnitude behind
are the cases of the SDPLS method with strictNegativeSpLinearImplicit and simpleLinearIm-
plicit discretization and no mollifier with 1.3 and 1.0 local order convergence at the two
finer resolutions.

The signed distance errors are shown in figure 6.22. As for the 3D deformation test case,
the SDPLS discretization simpleLinearImplicit without mollifier shows the best signed
distance error of 0.2 at the finest resolution with an order of convergence of 0.5.

The 3D shear comparison with the linear advection scheme is shown next. Figure 6.23
shows the geometrical error Eg. As for the 3D deformation case with the linear advection
scheme, the plain LS clearly shows the best geometrical error. The SDPLS method is more
than two orders of magnitude behind the simpleLinearImplicit and explicit with mollifier
discretization, also with reduced order of convergence.

The signed distance error E∇ψ is shown in figure 6.24. Here the SDPLS source term
discretizations strictNegativeSpLinearImplicit and simpleLinearImplicit with mollifier, show
the lowest signed distance error of magnitude 1 constant over all resolutions. The plain
LS method, with the third lowest signed distance error, shares this constant behaviour
over all resolutions, but is only 0.1 more off.
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Figure 6.20.: Signed distance errors of different discretizations of the source term of the
SDPLS method with linear for the 3D deformation test case on hexahedral

meshes

Summary

In summary, for the 3D deformation test case with LinearUpwind advection, the discretiza-
tion simpleLinearImplicit without mollifier performs clearly best and better than the plain
LS method for both the geometrical and the signed distance error. It has a signed distance
error of 0.3 with a convergence order of 0.2, while the plain LS method has an error of
5 and diverges. Its geometrical error is 3 × 10−3 better than for the plain LS method
with 5× 10−3, while sharing the first order convergence. For the 3D shear test case with
LinearUpwind advection, the discretization simpleLinearImplicit without mollifier also
shows the best results for the SDPLS method. It improves the signed distance error to
0.2 with a convergence order of 0.5, while the plain LS method shows an error of 2 and
diverges. For the geometrical error, the SDPLS method does not perform better than the
plain LS method. It has an error of 1× 10−3 with a convergence order of 0.7. The plain
LS method has an error of 5× 10−4 with a convergence order of 1.9.

For the linear advection scheme, the results of the SDPLS method are not as competitive
or clear. For the 3D deformation case, the SDPLS source term discretization strictNega-
tiveSpLinearIplicit without mollifier shows significant improvements in the signed distance,
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Figure 6.21.: Geometrical errors of different discretizations of the source term of the
SDPLS method with LinearUpwind for the 3D shear test case on hexahedral

meshes

while the signed distance error is still 1 and thus far from the signed distance. It also
shows a slight divergence. On the other hand, this discretization shows a geometrical
error of 4× 10−3 and a convergence order of only 0.6, while the plain LS method shows
an error of 1 × 10−6 and a second order convergence. For the 3D shear test case, the
discretizations strictNegativeSpLinearImplicit and simpleLinearImplicit with mollifier show
the lowest signed distance errors, but not far ahead of the plain LS method. None of them
show convergence.
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Figure 6.22.: Signed distance errors of different discretizations of the source term of the
SDPLS method with LinearUpwind for the 3D shear test case on hexahedral

meshes

3.1e− 021.6e− 027.8e− 03
h in m

10−6

10−5

10−4

10−3

10−2

E
g

SDPLS SOURCE / DIV / MOLLIFIER / SOURCE SCHEME

noSource / linear / none / none

R / linear / m1 / simpleLinearImplicit

R / linear / m1 / explicit

R / linear / none / explicit

R / linear / none / simpleLinearImplicit

R / linear / none / strictNegativeSpLinearImplicit

R / linear / m1 / strictNegativeSpLinearImplicit

second-order

first-order

3Dshear hex geometrical error Eg =
∑

c∈C |Ωc||αc(tend)− αc(t0)|

Figure 6.23.: Geometrical errors of different discretizations of the source term of the
SDPLS method with linear for the 3D shear test case on hexahedral meshes
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Figure 6.24.: Signed distance errors of different discretizations of the source term of the
SDPLS method with linear for the 3D shear test case on hexahedral meshes
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6.3.3. Different deformation intensities with the SDPLS method

Fricke et al. [17] presented first order signed distance convergence for the 2D contact
line test case. In section 6.3.1 these results are verified with the implementation in this
work. For the 3D deformation and 3D shear test cases, where a droplet undergoes much
more deformations, the SDPLS method with the LinearUpwind advection scheme shows
significant performance but convergence orders of 0.2 for 3D deformation and 0.5 for 3D
shear. This section presents studies investigating the performance of the SDPLS method
for different deformation intensities to see how long the SDPLS method can maintain
the signed distance with first order convergence. The discretization simpleLinearImplicit
without mollifier is chosen because it performed best with the LinearUpwind advection
scheme.

3D deformation
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Figure 6.25.: Geometrical errors for different end times, corresponding to different levels
of deformation, compared between the plain LS and the SDPLS method

with simpleLinearImplicit and no mollifier discretization and the
LinearUpwind advection scheme for the 3D deformation test case on

hexahedral meshes

The deformation intensity is scaled by varying the period duration τ in the velocity
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Figure 6.26.: Signed distance errors for different end times, corresponding to different
deformation intensities, compared between the plain LS and the SDPLS
method with simpleLinearImplicit and no mollifier discretization and the
LinearUpwind advection scheme for the 3D deformation test case on

hexahedral meshes

field, equation (6.5). Since only one deformation cycle is desired, tend = τ is set. The
figure 6.25 shows a comparison of the SDPLS method with the plain LS advection for
the geometrical error Eg. There are five different levels of deformation denoted by the
END_TIME value. The SDPLS and plain LS instances belonging to a deformation group
share the line colour, with the noSource case having the stronger colour and the SDPLS
instance having the paler colour. Looking at one group (colour) at a time, it can be seen
that for the case of END_TIME = 1.0 (purple lines) the plain LS method performs better
than the SDPLS method. For high deformations, e.g. END_TIME = 3.0 (blue lines), the
SDPLS method performs better than the plain LS method. Overall, for large deformations
(END_TIME ≥ 2.5) the SDPLS method shows better geometrical errors, while for small
deformations (END_TIME ≤ 1.5) the plain LS method shows better geometrical errors.

Figure 6.26 shows the same comparison for the signed distance error E∇ψ. All cases of the
plain LS method show a signed distance error of magnitude 100, indicating that the signed
distance is not preserved. Furthermore, none of these cases converge. For the cases with
an active SDPLS source term, however, convergence can be seen. For small deformations
with END_TIME ≤ 2.0 a first order convergence is visible. For higher deformations the
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order of the convergence flattens out.

3D shear
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Figure 6.27.: Geometrical errors for different end times, corresponding to different levels
of deformation, compared between the plain LS and the SDPLS method

with simpleLinearImplicit and no mollifier discretization and the
LinearUpwind advection scheme for the 3D shear test case on hexahedral

meshes

Comparing the geometrical error Eg with and without the SDPLS source term during
advection with the LinearUpwind in the 3D shear case, it becomes clear that noSource
performs better at finer resolutions for all deformation intensities. The higher the defor-
mation intensity, the greater the discrepancy between the plain LS method and the SDPLS
method. The SDPLS method shows better geometrical errors only for high deformations
on coarse meshes.

Looking at the signed distance error E∇ψ in figure 6.28 the SDPLS method performs better
and preserves the signed distance at all deformation intensities. First order convergence
is maintained up to a deformation intensity of END_TIME ≤ 2.0. For the deformation of
END_TIME = 1.0 even a higher order of convergence of 1.5 is visible.
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Figure 6.28.: Signed distance errors for different end times, corresponding to different
levels of deformation, compared between the plain LS and the SDPLS

method with simpleLinearImplicit and no mollifier discretization and the
LinearUpwind advection scheme for the 3D shear test case on hexahedral

meshes

In summary, the SDPLS method preserves the signed distance with first order accuracy for
the test cases 3D deformation and 3D shear up to a deformation intensity corresponding
to τ = 2.0 for one cycle. The deformation amplitude at time t = 1.0 is visualised for both
cases in figure 6.29. The geometrical error for the 3D deformation case is improved with
the SDPLS method for high deformation, while for the 3D shear case it is improved only
for high deformation on coarse meshes.
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(a) 3D deformation at time t = 1.0 (b) 3D shear at time t = 1.0

Figure 6.29.: Deformation amplitude of the 3D deformation and 3D shear test cases with
τ = 2.0

6.4. Two-phase flows

This section presents the results of the simulation of the 3D stationary droplet two-phase
flow test case using the developed solver, which is described in chapter 5.2. The following
studies differ in the implementations used to calculate the surface tension force with the
CSF model by Brackbill et al. [4] (see chapter 5.3), in the advection scheme used for the
LS equation (4.30) and the momentum equation (4.18) and in the fluid combinations
used. Plots are shown for parasitic currents as they are critical for accuracy and for volume
conservation as it is a known weakness of the LS method. The following studies test the

Table 6.1.: Fluid Properties
Fluid ν in m2/s ρ in kg/m3

Water 1.0× 10−6 998.2
Air 1.53× 10−5 1.19

Oil (Novec7500) 0.77× 10−6 1614.0

fluid combination oil(Novec7500)—water with σ = 49.5× 10−3 N/m and water—air with
σ = 72.74× 10−3 N/m. The fluid properties can be read from the table 6.1. The advection
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schemes used are linear, LinearUpwind, MUSCL and upwind. Temporal discretization is
performed using the implicit Euler method. For the gradient discretization the Gauss
linear scheme is used.

oil(Novec7500)—water

This subsection presents the parasitic currents and volume conservation results for the 3D
stationary droplet test case with the fluid pairing of oil(Novec7500)—water. This fluid
pair has similar densities, which keeps the momentum jump at the interface small and
the computation more stable.
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Figure 6.30.: Parasitic currents over time at the finest resolutions for the 3D stationary
droplet test case with oil(Novec7500)—water fluid pairing on hexahedral

meshes

Figure 6.30 shows the maximum velocity of the flow field over time at the finest resolution
of 128 cells per dimension, resulting in a characteristic grid spacing of h = 7.8×10−5. Since
the analytical solution does not include any motion, all resulting velocities correspond to
parasitic currents. For the linear, LinearUpwind andMUSCL schemes, the parasitic currents
initially decay. Then they oscillate with decreasing amplitude and converge to a value of
3.9× 10−4. Parasitic currents with the upwind advection scheme diverge. Also the surface
tension implementations divGradPsiSnGradAlpha and traceGradGradPsiSnGradAlpha don’t
show any difference, which may be difficult to see but is verified with tabulated data.

83



3.1e− 041.6e− 047.8e− 05
h in m

10−4

10−3

m
ax

(|v
(t

e
n

d
)|)

in
m

/s

FSIGMA / DIV

divGradPsiSnGradAlpha / MUSCL

traceGradGradPsiSnGradAlpha / MUSCL

traceGradGradPsiSnGradAlpha / LinearUpwind

divGradPsiSnGradAlpha / LinearUpwind

traceGradGradPsiSnGradAlpha / linear

divGradPsiSnGradAlpha / linear

traceGradGradPsiSnGradAlpha / upwind

divGradPsiSnGradAlpha / upwind

second-order

first-order

stationaryDroplet3D hex maximal velocity max(|v|)

Figure 6.31.: Parasitic currents at different resolutions for the 3D stationary droplet test
case with oil(Novec7500)—water fluid pairing on hexahedral meshes

Figure 6.31 shows the parasitic currents for all three mesh resolutions. No convergence is
visible. But the parasitic currents for the schemes linear, LinearUpwind and MUSCL stay
almost constant over all resolutions.

Figure 6.32 shows the volume conservation errors over the three mesh resolutions. For the
schemes linear, LinearUpwind and MUSCL a second order convergence with an absolute
error of 3.2× 10−4 for linear and 4.6× 10−4 for the other schemes is visible. The case with
the upwind scheme at the finest mesh resolution if worse by one magnitude and upwind
does not show a clear convergence.

Comparing the maximum parasitic current results with those of Lippert et al. [34, fig-
ure 9.c], the developed LS method performs comparable to the VoF methods imple-
mented in interFoam, interIsoFoam and Fluent in the case of a 3D stationary droplet with
oil(Novec7500)—water fluid pairing.

water—air

This subsection presents the parasitic currents and volume conservation results for the
3D stationary droplet test case with the fluid pairing of oil(Novec7500)—water. This
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Figure 6.32.: Volume conservation errors at different resolutions for the 3D stationary
droplet test case with oil(Novec7500)—water fluid pairing on hexahedral

meshes

fluid pair has a high density ratio of
⃓⃓⃓
ρwater

ρair

⃓⃓⃓
= 838.8, which introduces a high momentum

jump across the interface and makes the calculation prone to instabilities. Avoiding these
instabilities is a separate area of research and the method developed in this work does
not include any measures to address this.

Figure 6.33 shows the parasitic currents plotted over time at the highest resolution of
h = 7.8 × 10−5. Cases with the linear and MUSCL advection schemes crashed and are
therefore not shown. The remaining cases show stable parasitic flows. At the beginning
the parasitic currents increase to the magnitude of 100m/s. At the end they all seem to
converge to 0.3m/s with LinearUpwind showing high oscillations up to 100m/s.

Figure 6.34 shows the parasitic currents over all mesh resolutions. It shows that the
parasitic currents increase with the mesh resolution. There is no significant difference
between the different surface tension calculation methods divGradPsiSnGradAlpha and
traceGradGradPsiSnGradAlpha.

Figure 6.35 shows the volume conservation errors over the three mesh resolutions. All
combinations lose 100% of their volume from the second resolution, which verify a
complete failure of the method for this setup.
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Figure 6.33.: Parasitic currents over time at the finest resolutions for the 3D stationary
droplet test case with water—air fluid pairing on hexahedral meshes
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Figure 6.34.: Parasitic currents at different resolutions for the 3D stationary droplet test
case with water—air fluid pairing on hexahedral meshes
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Figure 6.35.: Volume conservation errors at different resolutions for the 3D stationary
droplet test case with water—air fluid pairing on hexahedral meshes
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7. Conclusion

This chapter serves as a summary and conclusion of the main results of this thesis. It
begins by addressing the question of the appropriate advection scheme for the LS method.
It then discusses the results with respect to the SDPLS method. Finally, it discusses the
studies carried out for the 3D stationary droplet test case.

When it comes to advection schemes for the LS method, there is no universally superior
scheme that fits all situations. Among the schemes tested, both the LinearUpwind and
MUSCL schemes show robustness for complex velocity fields and all types of meshes, while
also exhibiting the best geometrical accuracy compared to other more robust schemes.
On the other hand, the linear scheme performs poorly in the case of 3D rotation and even
crashes when used with polyhedral meshes. It is therefore not as universally applicable
as the LinearUpwind scheme. However, the linear scheme shows significant accuracy in
terms of geometrical and volume conservation errors in the 3D deformation and 3D shear
test cases. This is unexpected and surprising as the flow fields in the 3D deformation
and 3D shear test cases are complex and generally not aligned with the face normals.
Furthermore, it is shown that this result is not artificially generated by error cancellation
due to the underlying oscillating velocity field. These observations raise questions about
the significant differences between the flow fields in the 3D rotation test case and the 3D
deformation and 3D shear test cases. Another interesting finding is that the linear scheme,
when applied to the 3D stationary droplet case with oil(Novec7500)—water, shows similar
magnitudes for parasitic currents and volume conservation in both the momentum and
LS equations. This suggests that the linear scheme may hold relevance within the context
of LS methods. Further research involving more complex flows may provide additional
insights.

Considering all the studies on the SDPLS method, it can be concluded that the SDPLS
method effectively improves the signed distance in all cases, especially when combined
with the more monotonous LinearUpwind advection scheme. Among the different dis-
cretization options, the simpleLinearImplicit method without mollifier gives the best results
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for advection with the LinearUpwind scheme, as supported by Patankar [53], who stated
that it is the most accurate linearization because of its tangential fit. Interestingly, the
diagonal dominance of the assembled linear system appears to be unaffected by the SDPLS
source term, rendering unnecessary the second best discretization option, strictNegativeS-
pLinearImplicit, which switches to explicit discretization on a cell-wise basis. In contrast,
advection with the linear scheme in LS methods leads to higher signed distance errors
overall. The SDPLS method with the linear advection scheme does not show significant
improvements in signed distance errors compared to the plain LS method, suggesting a
possible interference between the SDPLS source term and small oscillations introduced
by the non-monotone linear advection scheme. The use of the SDPLS method results in
improved signed distance measurements in all cases. However, first order convergence, as
observed in the 2D contact line case, could not be established for the standard 3D defor-
mation and 3D shear test cases, but for instances with reduced deformation amplitudes.
In particular, for the 3D shear test case with a period duration of τ = 1, a convergence
order of 1.5 is even observed. In terms of geometrical error, improvements are observed
for high deformations in the 3D deformation test case. Conversely, in the 3D shear case,
improvements are only observed for high deformations and coarse resolutions. A potential
further improvement to the SDPLS method could be to iteratively solve the LS equation
and update the explicit non-linear part of the source term to converge to a fully implicit
source term. This approach has the potential to improve the accuracy and stability of the
method.

The developed LS method for the simulation of two-phase flows gives comparable results
to VoF methods for the 3D stationary droplet test case with oil(Novec7500)—water fluid
pairing. The parasitic currents remain below 10−3m/s, and the volume loss is only
about 0.033% for the highest mesh resolution (h = 7.8 × 10−5). However, the method
fails when applied to fluid pairs with high density ratios, such as water and air. To
address this limitation, future work could focus on implementing and testing existing
techniques designed to handle high density ratios. In addition, exploring the use of
curvature corrections within the LS method could further reduce parasitic currents, taking
advantage of the method’s known ability to easily calculate curvature. Furthermore,
subsequent studies could investigate two-phase flow test cases with more complex velocity
fields. It would be interesting to evaluate the performance of the method in terms of
volume conservation and curvature under such conditions. Also, using the SDPLS method
to improve the signed distance and thereby improve the curvature calculations would be
a worthwhile study.
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Figure A.1.: Volume conservation errors of the ten best advection schemes with the LS
method for the 3D rotation test case on hexahedral meshes
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Figure A.2.: Volume conservation errors of the ten best advection schemes with the LS
method for the 3D rotation test case on perturbed hexahedral meshes
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Figure A.3.: Volume conservation errors of the ten best advection schemes with the LS
method for the 3D rotation test case on polyhedral meshes
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Figure A.4.: Volume conservation errors of the ten best advection schemes with the LS
method for the 3D deformation test case on hexahedral meshes
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Figure A.5.: Volume conservation errors of the ten best advection schemes with the LS
method for the 3D deformation test case on perturbed hexahedral meshes
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Figure A.6.: Volume conservation errors of the ten best advection schemes with the LS
method for the 3D deformation test case on polyhedral meshes
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