Weeger, Oliver (2021)
Numerical homogenization of second gradient, linear elastic constitutive models for cubic 3D beam-lattice metamaterials.
In: International Journal of Solids and Structures, 2021, 224
doi: 10.26083/tuprints-00019874
Article, Secondary publication, Postprint
|
Text
2021_Weeger_2ndGradLatticeHomogen_accepted.pdf Copyright Information: CC BY-NC-ND 4.0 International - Creative Commons, Attribution NonCommercial, NoDerivs. Download (2MB) | Preview |
Item Type: | Article |
---|---|
Type of entry: | Secondary publication |
Title: | Numerical homogenization of second gradient, linear elastic constitutive models for cubic 3D beam-lattice metamaterials |
Language: | English |
Date: | 2021 |
Place of Publication: | Darmstadt |
Year of primary publication: | 2021 |
Publisher: | Elsevier |
Journal or Publication Title: | International Journal of Solids and Structures |
Volume of the journal: | 224 |
Collation: | 24 Seiten |
DOI: | 10.26083/tuprints-00019874 |
Corresponding Links: | |
Origin: | Secondary publication service |
Abstract: | Generalized continuum mechanical theories such as second gradient elasticity can consider size and localization effects, which motivates their use for multiscale modeling of periodic lattice structures and metamaterials. For this purpose, a numerical homogenization method for computing the effective second gradient constitutive models of cubic lattice metamaterials in the infinitesimal deformation regime is introduced here. Based on the modeling of lattice unit cells as shear-deformable 3D beam structures, the relationship between effective macroscopic strain and stress measures and the microscopic boundary deformations and rotations is derived. From this Hill–Mandel condition, admissible kinematic boundary conditions for the homogenization are concluded. The method is numerically verified and applied to various lattice unit cell types, where the influence of cell type, cell size and aspect ratio on the effective constitutive parameters of the linear elastic second gradient model is investigated and discussed. To facilitate their use in multiscale simulations with second gradient linear elasticity, these effective constitutive coefficients are parameterized in terms of the aspect ratio of the lattices structures. |
Status: | Postprint |
URN: | urn:nbn:de:tuda-tuprints-198743 |
Additional Information: | Numerical homogenization, Generalized continuum mechanics, Second gradient linear elasticity, Lattice metamaterials, Multiscale simulation |
Classification DDC: | 600 Technology, medicine, applied sciences > 600 Technology |
Divisions: | 16 Department of Mechanical Engineering > Cyber-Physical Simulation (CPS) |
Date Deposited: | 15 Dec 2021 13:58 |
Last Modified: | 16 Aug 2023 05:49 |
URI: | https://tuprints.ulb.tu-darmstadt.de/id/eprint/19874 |
PPN: | 510629989 |
Export: |
View Item |