Items where Division is "16 Department of Mechanical Engineering > Institut für Leichtbau und Strukturmechanik (LSM)" and Year is [pin missing: value2]
Up a level |
- TU Darmstadt (6)
- 16 Department of Mechanical Engineering (6)
- Institut für Leichtbau und Strukturmechanik (LSM) (6)
- 16 Department of Mechanical Engineering (6)
2024
Georges, Hussam ; García Solera, Diego ; Aguilar Borasteros, Carlos ; Metar, Mohmad ; Song, Gyeongseob ; Mandava, Rahul ; Becker, Wilfried ; Mittelstedt, Christian (2024)
Mechanical Performance Comparison of Sandwich Panels with Graded Lattice and Honeycomb Cores.
In: Biomimetics, 2024, 9 (2)
doi: 10.26083/tuprints-00027163
Article, Secondary publication, Publisher's Version
Klein, Jens Martin (2024)
Zur Gestaltung adhäsiver Laminatstirnverankerungen und Prozessanalyse zur Fertigung thermoplastischer Faserverbundrohre.
Beiträge zur Weiterentwicklung modularer Druckbehälter nach der Darmstädter Bauweise.
doi: 10.26083/tuprints-00026500
Book, Secondary publication, Publisher's Version
Meyer, Guillaume Bertrand Thibaut (2024)
Towards implementing lattice structures into load-bearing lightweight components.
doi: 10.26083/tuprints-00026946
Book, Secondary publication, Publisher's Version
Meyer-Coors, Michael ; Kienzler, Reinhold ; Schneider, Patrick (2024)
Modularity of the displacement coefficients and complete plate theories in the framework of the consistent-approximation approach.
In: Continuum Mechanics and Thermodynamics, 2021, 33 (4)
doi: 10.26083/tuprints-00023441
Article, Secondary publication, Publisher's Version
Schilling, Jakob Christian ; Mittelstedt, Christian (2024)
Approximate postbuckling analysis of shear deformable laminates.
In: PAMM - Proceedings in Applied Mathematics and Mechanics, 2023, 23 (4)
doi: 10.26083/tuprints-00027195
Article, Secondary publication, Publisher's Version
Schreiber, Philip ; Mittelstedt, Christian (2024)
Lévy‐type solutions for buckling of shear deformable unsymmetrically laminated plates with rotational restraints.
In: PAMM - Proceedings in Applied Mathematics and Mechanics, 2023, 23 (3)
doi: 10.26083/tuprints-00027209
Article, Secondary publication, Publisher's Version