TU Darmstadt / ULB / TUprints

Metabolic Engineering of Ketocarotenoid Biosynthetic Pathway into the model organism Chlamydomonas reinhardtii

Tran, Nam Trung (2019):
Metabolic Engineering of Ketocarotenoid Biosynthetic Pathway into the model organism Chlamydomonas reinhardtii.
Darmstadt, Technische Universität, [Ph.D. Thesis]

[img]
Preview
Text
01082019_Dissertation_NT_Tran.pdf - Accepted Version
Available under CC-BY-SA 4.0 International - Creative Commons, Attribution Share-alike.

Download (6MB) | Preview
Item Type: Ph.D. Thesis
Title: Metabolic Engineering of Ketocarotenoid Biosynthetic Pathway into the model organism Chlamydomonas reinhardtii
Language: English
Abstract:

Ketocarotenoids represent a special group of carotenoids characterized by presence of one or several carbonyl (C=O) groups in their ionone rings. Due to their excellent anti-oxidative characteristics, several ketocarotenoids such as canthaxanthin and astaxanthin are valuable pigments highly sought by feed, cosmetical and nutraceutical industries. In this work I aimed to introduce ketocarotenoid biosynthetic pathway into the model organism Chlamydomonas reinhardtii via overexpression of its native key enzyme ß-carotene ketolase (CrBKT). High transgene expression and transgene stability were attained with help of the bicistronic Ble2A system in which, the selection marker - zeocin-resistance conferring ble gene - is directly linked to gene-of-interest via the so-called self-cleavage foot-and-mounth-disease-virus (FMDV) 2A sequence. Functionality of Ble2A system was proven by successful production of the fluorescence protein mCherry in Chlamydomonas. CrBKT’s enzymatic activity was also successfully confirmed by heterologous production in carotenoid-producing E. coli, indicated by the almost complete conversion of ß-carotene to canthaxanthin and of zeaxanthin to astaxanthin. Two strains of Chlamydomonas were chosen for metabolic engineering: strain UVM-4 which boasted improved transgene expression and strain CC-4102 in which only ß-carotene and zeaxanthin are accumulated due to mutations in beta-carotene biosynthetic pathway and xanthophyll cycle. Transformation of both strains with CrBKT overepxression vectors yielded hundreds of zeocin-resistant colonies but only in ~10% of them could the integration of CrBKT be confirmed via PCR. Ketocarotenoid production was not detected in any PCR-positive lines either. Success was only achieved when transformation conditions were changed, namely algal cells were transformed and recovered in dark on growth medium supplemented with yeast extract and tryptone. Under these conditions, I was able to isolate four CrBKT-overproducing transformants. All four lines were characterized by their pale green color as well as their drastically reduced chlorophyll contents. Canthaxanthin production was also detected in two lines, whose concentration stood at about 10% of total cellular carotenoids (~0.1 pg/cell). An intriguing phenomenon was also observed with these pale green canthaxanthin-producing transformants. When cultivated in light, they promptly reverted back to the normal dark green color. Canthaxanthin could no longer be detected and zeocin resistance was seeminly impaired as well. Though the cause of this phenomenon could not be pinpointed with certainty, it did help explain the failure of my earlier experiments. Taken together, these results formed the foundation for future projects of ketocarotenoid metabolic engineering in microalgae. Several potential pitfalls that might be encountered were identified and strategies to overcome them were also suggested.

Alternative Abstract:
Alternative AbstractLanguage
Ketocarotinoide gehören zu einer speziellen Gruppe der Carotinoide, die durch eine oder mehrere Ketogruppen (C=O) in ihren Iononringen charakterisiert werden. Aufgrund ihrer hervorragenden antioxidative Wirkung sind Ketocarotinoide wie Canthaxanthin oder Astaxanthin wertvolle Pigmente, die in der Futter-, Kosmetik- und nutrazeutische Industrie immer begehrt sind. In dieser Arbeit möchte ich anhand Überexprimierung des nativen Schlüsselenzyms ß-Carotinketolase (CrBKT), den ketocarotinoid-biosynthetische Pathway in das Modelorganismus Chlamydomonas reinhardtii einbauen. Transgen-Exprimierung bzw. Transgen-Stabilität sollen durch Einsatz des Ble2A-System verbessert werden, in dem der Selektionsmarker - das für Zeocin-Resistenz verantwortliche ble Gen – direkt mit dem Gene-of-interest durch die sogenannte selbst-gespaltete 2A-Sequenz aus Maul-und-Klauenseuche-Virus (FMDV) verknüpft wird. Die Funktionalität des Ble2A system wurde durch erfolgreiche Exprimierung des fluoreszierenden Proteins mCherry in Chlamydomonas bestätigt. Ebenfalls nachgewiesen war die enzymatische Aktivität von CrBKT, dessen heterologe Exprimierung in carotinoid-produzierenden E. coli-Zellen zu fast vollständige Konvertierung von ß-Carotin zu Canthaxanthin bzw. von Zeaxanthin zu Astaxanthin führte. Zwei Chlamydomonas-Stämme wurden für die Metabolic-Engineering-Experimente ausgewählt: Stamm UVM-4, in dem Transgen-Exprimierung erhöht werden sollte, und Stamm CC-4102, in dem wegen Mutationen sowohl in beta-carotin-biosynthetischem Pathway als auch im Xanthophyll-Zyklus nur ß-Carotin und Zeaxanthin akkumuliert werden. Nach Transformation der beiden Stämme ergaben sich hunderte zeocin-resistente Kolonien, lediglich ca. 10% wiesen die erfolgreiche Integration des CrBKT-Gens ins Genom auf. In keinen Transformanten war Ketocarotinoid-Produktion nachzuweisen. Erfolgreiche Ergebnisse konnte nur durch Veränerdung der Transformationsbedingungen erreicht werden: die Algenzellen wurden im Dunkeln auf mit Hefeextrakt und Trypton ergänztem Wachstumsmedium transformiert und selektiert. Unter diesen Bedingungen ist es mir gelungen, vier CrBKT-überexprimierende Linien zu isolieren. Alle vier Linien verfügen über eine blassgrüne Farbe und drastisch reduzierten Chlorophyll-Gehalt. In zwei Linien war Canthaxanthin-Produktion nachgewiesen, Canthaxanthin-Konzentration beträgt ca. 10% gesamte Carotinoide-Menge der Zelle (0.1 pg/Zelle). Ein nicht erwartetes Phänomenon war mit den blassgrünen, canthaxanthin-produzierenden Transformanten zu beobachten. Waren sie im Licht kultiviert, kehrten sie schnell zu der normal grünen Farbe zurück. Canthaxanthin-Produktion war nicht mehr detektierbar und Zeocin-Resistenz war ebenfalls beeinträchtigt. Zusammen bilden diese Ergebnisse die Grundlage für Ketocarotinoide-Metabolic Engineering-Versuche in Zukunft. Mögliche Schwierigkeiten, denen man begegnen kann, sind identifiziert und Strategien, mit denen man diese Schwierigkeiten beseitigen kann, werden vorgeschlagen.German
Place of Publication: Darmstadt
Classification DDC: 500 Naturwissenschaften und Mathematik > 570 Biowissenschaften, Biologie
500 Naturwissenschaften und Mathematik > 580 Pflanzen (Botanik)
Divisions: 10 Department of Biology > Applied Plant Sciences
Date Deposited: 11 Sep 2019 13:24
Last Modified: 11 Sep 2019 13:24
URN: urn:nbn:de:tuda-tuprints-89659
Referees: Kaldenhoff, Prof. Dr. Ralf and Cardoso, Prof. Dr. Christina
Refereed: 18 July 2019
URI: https://tuprints.ulb.tu-darmstadt.de/id/eprint/8965
Export:
Actions (login required)
View Item View Item