TU Darmstadt / ULB / TUprints

From the bottom up - A systematic study of structure based coarse graining approaches

Rosenberger, David :
From the bottom up - A systematic study of structure based coarse graining approaches.
TUprints, Darmstadt
[Ph.D. Thesis], (2019)

Available under CC-BY-NC-ND 4.0 International - Creative Commons, Attribution Non-commerical, No-derivatives.

Download (5MB) | Preview
Item Type: Ph.D. Thesis
Title: From the bottom up - A systematic study of structure based coarse graining approaches
Language: English

Computer simulations of soft matter require a compromise to be made between the computational efficiency and the resolution of a model studied. Highly resolved models can give insights into the interactions between individual atoms in a soft material. But, since these atomistic models are computational expensive, they are limited to small length scales and short time scales, which makes it difficult to compare simulation results with the ones from experiments in the laboratory. On the other hand, continuum models enable the study of soft matter at larger length and longer time scales and are computationally less expensive, but they rather focus on macroscopic properties than on their atomistic origin. A possible way to bridge the gap between these scales is to perform simulations at an intermediate level of resolution. The problem, which exists at this mesoscopic scale, is the lack of accurate models. Hence, new ones have to be built. The process to construct mesoscopic models based on information from the atomistic scale is commonly referred to as bottom-up coarse graining. Bottom-up coarse graining describes the process of lowering the resolution of a atomistic model to make it applicable at larger length and time scales. The major goal of this Ph.D. thesis is to increase the knowledge on so called structure-based bottom-up coarse graining techniques.These methods enable the derivation of coarse grained (CG) models, which accurately reproduce the structure of an atomistic or fine grained (FG) model at the mesoscopic scale. The shortcomings of different structure-based methods are carefully analyzed and new approaches to overcome them are presented.

Alternative Abstract:
Alternative AbstractLanguage
Computersimulationen weicher Materie unterliegen einem Kompromiss zwischen dem Rechenaufwand und der Auflösung des verwendeten Modells. Hoch aufgelöste Modelle erlauben es die Wechselwirkungen zwischen einzelnen Atomen in weichen Materialen zu untersuchen. Jedoch sind diese Modelle in ihre Anwendbarkeit limitiert, weil sie aufgrund ihres hohen Rechenaufwandes nur auf kurzen Längen- und Zeitskalen verwendet werden können. Dies erschwert den Vergleich von Simulationsergebnissen mit den Ergebnissen, welche aus Laborexperimenten erhalten werden. Verringert man die Auflösung der Modelle, verkleinert man zwar den Rechenaufwand und überwindet die Zeit- und Längenskalenbeschränkung, jedoch verliert man gleichzeitig Information über die atomaren Wechselwirkungen. Um die Lücke zwischen diesen Skalen zu schliessen, besteht die Möglichkeit atomistische Modelle zu vergröbern. Findet die Vergröberung basierend auf Information höher aufgelöster Modelle statt, bezeichnet man die Vergröberungsmethoden auch als von unten nach oben Vergröberungstechniken. Im Rahmen dieser Doktorarbeit beschäftige ich mich mit Vergröberungstechniken, welche die Struktur eines hoch aufgelösten Modelles auf der vergröberten Ebene exakt wiedergeben. Die Schwächen dieser struktur- basierten Methoden werden analysiert und neue Lösungswege diese zu verbessern werden vorgestellt.German
Place of Publication: Darmstadt
Publisher: TUprints
Classification DDC: 500 Naturwissenschaften und Mathematik > 540 Chemie
Divisions: 07 Department of Chemistry > Computational Physical Chemistry
Date Deposited: 13 May 2019 09:55
Last Modified: 13 May 2019 09:55
URN: urn:nbn:de:tuda-tuprints-85094
Referees: van der Vegt, Prof. Dr. Nico and Hanke-Bourgeois, Prof. Dr. Martin
Refereed: 24 April 2019
URI: https://tuprints.ulb.tu-darmstadt.de/id/eprint/8509


Downloads per month over past year

Actions (login required)
View Item View Item