TU Darmstadt / ULB / TUprints

A systemic approach to implementation of sanitation and agricultural water reuse

Müller, Katharina (2020)
A systemic approach to implementation of sanitation and agricultural water reuse.
doi: 10.25534/tuprints-00006663
Book, Secondary publication, Publisher's Version

KMueller Dissertation 2017 tuprints.pdf
Copyright Information: CC BY 4.0 International - Creative Commons, Attribution.

Download (8MB) | Preview
Item Type: Book
Type of entry: Secondary publication
Title: A systemic approach to implementation of sanitation and agricultural water reuse
Language: English
Referees: Cornel, Prof. Dr. Peter ; Lackner, Prof. Dr. Susanne ; Drewes, Prof. Dr. Jörg
Date: June 2020
Place of Publication: Darmstadt
Year of primary publication: 2017
Publisher: Institut IWAR
Date of oral examination: 12 December 2016
DOI: 10.25534/tuprints-00006663
Origin: Secondary publication

In the light of a growing global urban population and increasing water scarcity, previous work in the field of sanitation and water reuse has emphasized the need for a holistic and integrated view of all components involved in sanitation systems. A systemic approach is needed to recover the resources contained in sewage and to maximize their benefits. There is a consensus that this approach requires further support. The main obstacles to the implementation of new approaches to urban water management are the lack of knowledge regarding inherent uncertainties and risks, practical management challenges, the available institutional capacities and capacities to facilitate community involvement, financial considerations, and institutional and personal biases that act as barriers. This dissertation explores the main challenges and knowledge gaps encountered during implementation of a project on sanitation and water reuse in North Namibia. The objective is to fill the encountered knowledge gaps and to demonstrate the implications that the observations have in practice. This reduces obstacles to the implementation of new concepts in urban water management and maximizes the achievable benefits of sanitation systems. The implemented infrastructure includes various types of sanitation facilities, a vacuum sewer system, a wastewater treatment plant with sedimentation and anaerobic pretreatment, aerobic treatment and secondary clarification, microscreening and UV disinfection. The treated water is stored in a pond and applied to agricultural fields via surface drip lines. The reclaimed water is used for the production of vegetables for human consumption. The main results of this study and its consequences for practice can be summarized as follows:

•The specific water use and the specific loads in wastewater from shared sanitation facilities differ considerably from those of individual sanitation facilities. Hence, the wastewater characteristics are also different, which has implications for wastewater and sludge treatment, nutrient and salt management for water reuse on agricultural fields and the energy recovery potential from the wastewater constituents and agricultural biomass.

•The structural layout of shared sanitation facilities needs to fit with the desired management and billing system. Particularly important aspects are the collection of revenues and control of visitor flows.

•Tariff levels, the method of revenue collection, and the population density influence the utilization and hence the quantities and characteristics of the wastewater from shared sanitation facilities. This already needs to be considered during planning. Generation of sufficient revenues for cost recovery is difficult in low-income areas with a low population density.

•In settings where national regulations regarding reclaimed water quality do not (yet) ex-ist, the recommendations in this study can be used to develop relevant water quality criteria. The recommendations in existing international guidelines are complemented with site-specific water quality limits for the protection of irrigation infrastructure (turbidity, chemical oxygen demand, biochemical oxygen demand), the required water quality prior to UV disinfection (turbidity, total suspended solids, particle size), and prevention of eutrophication and negative effects on plants (nitrogen, phosphorus and potassium).

•Water storage facilities should be considered as an additional treatment step that contributes to the reliability of the water reclamation process and to achieving the required water quality.

•The risks of soil salinization and overfertilisation were less serious than expected in this case. However, in other settings with, e.g., a higher proportion of wastewater from individual households, measures for control of salts and nutrient input to agricultural fields need to be implemented as suggested.

•Residues of crops irrigated with reclaimed water can contribute only to a limited extent to biogas and electricity generation via codigestion with sewage sludge. The market value of the crops is usually higher than the value of the producible electricity.

•Important impediments to co-generation in Southern Africa are the tariff structures of the local electricity supply entities. Rebates or credits for electricity fed into the grid are usually not possible. Additionally, fixed costs constitute a major part of the electricity costs. Thus, for the given tariff structure, co-generation can only reduce electricity costs if the produced electricity is consumed immediately on site. For the first time, a sanitation system has been analyzed from a holistic perspective, providing detailed specifications for planning, data monitoring and influencing factors. This is a sound basis for better planning and implementation of similar projects. The knowledge gaps that caused misconceptions and difficulties during realization of this project are now closed or addressed and can, at least, be realistically assessed right from the start.

Alternative Abstract:
Alternative AbstractLanguage

Globales Bevölkerungswachstum, zunehmende Urbanisierung und steigende Wasserknappheit erfordern eine ganzheitliche, integrierte Vorgehensweise hinsichtlich Wasserver-, Abwasserentsorgung und Wasserwiederverwendung. Ein systemischer Ansatz ist notwendig, um im Abwasser enthaltene Ressourcen zurückzugewinnen und den durch Sanitärversorgung erzielbaren Mehrwert zu maximieren. Diese Vorgehensweise muss in Zukunft weitere Verbreitung finden. Hindernisse für die Implementierung von neuen Konzepten im urbanen Wassermanagement sind hauptsächlich fehlendes Wissen hinsichtlich systemimmanenter Unsicherheiten und Risiken, Managementherausforderungen in der Praxis, die zur Verfügung stehenden institutionellen Kapazitäten, die zur Verfügung stehenden Kapazitäten zur Einbindung der lokalen Bevölkerung, finanzielle Erwägungen sowie als Barrieren wirkende institutionelle und persönliche Neigungen. Die vorliegende Dissertation untersucht die wesentlichen Herausforderungen und Wissenslücken während der Implementierung eines Projekts zur Abwassersammlung, -behandlung und Wasserwiederverwendung in Nord-Namibia. Die im Rahmen dieses Projekts implementierte Infrastruktur umfasst verschiedene Arten von Sanitäranlagen, eine Vakuumkanalisation, eine Kläranlage mit Sedimentation und anaerober Vorbehandlung des Abwassers, aerober Behandlung mit Nachklärung, Mikrosiebung und UV Desinfektion. Das behandelte Abwasser wird in einem Becken gespeichert und mit oberirdischer Tröpfchenbewässerung auf landwirtschaftlichen Flächen aufgebracht. Das Wasser wird für die Produktion von Gemüse für den menschlichen Verzehr verwendet. Zum ersten Mal wurde ein System zur Abwassersammlung, -behandlung und Wasserwiederverwendung aus einer ganzheitlichen Perspektive analysiert und detaillierte Informationen hinsichtlich Planung, Monitoring und wichtiger Einflussgrößen während der Realisierung dargestellt. Das ist eine solide Grundlage für die bessere Planung und Implementierung von vergleichbaren Projekten. Wissenslücken, die zu falschen Annahmen und Schwierigkeiten während der Umsetzung führten, wurden geschlossen beziehungsweise adressiert und können nun von Anfang an realistisch eingeschätzt werden.

Status: Publisher's Version
URN: urn:nbn:de:tuda-tuprints-66634
Classification DDC: 600 Technology, medicine, applied sciences > 620 Engineering and machine engineering
600 Technology, medicine, applied sciences > 630 Agriculture, veterinary medicine
Divisions: 13 Department of Civil and Environmental Engineering Sciences > Institute IWAR
13 Department of Civil and Environmental Engineering Sciences > Institute IWAR > Wastewater Technology
Date Deposited: 10 Jan 2020 07:14
Last Modified: 09 Jul 2020 01:48
URI: https://tuprints.ulb.tu-darmstadt.de/id/eprint/6663
PPN: 457881577
Actions (login required)
View Item View Item