Warbinek, Jessica ; Anđelić, Brankica ; Block, Michael ; Chhetri, Premaditya ; Claessens, Arno ; Ferrer, Rafael ; Giacoppo, Francesca ; Kaleja, Oliver ; Kieck, Tom ; Kim, EunKang ; Laatiaoui, Mustapha ; Lantis, Jeremy ; Mistry, Andrew ; Münzberg, Danny ; Nothhelfer, Steven ; Raeder, Sebastian ; Rey-Herme, Emmanuel ; Rickert, Elisabeth ; Romans, Jekabs ; Romero-Romero, Elisa ; Vandebrouck, Marine ; Duppen, Piet van ; Walther, Thomas (2022)
Advancing Radiation-Detected Resonance Ionization towards Heavier Elements and More Exotic Nuclides.
In: Atoms, 2022, 10 (2)
doi: 10.26083/tuprints-00021280
Article, Secondary publication, Publisher's Version
Text
atoms-10-00041-v2.pdf Copyright Information: CC BY 4.0 International - Creative Commons, Attribution. Download (2MB) |
Item Type: | Article |
---|---|
Type of entry: | Secondary publication |
Title: | Advancing Radiation-Detected Resonance Ionization towards Heavier Elements and More Exotic Nuclides |
Language: | English |
Date: | 6 May 2022 |
Place of Publication: | Darmstadt |
Year of primary publication: | 2022 |
Publisher: | MDPI |
Journal or Publication Title: | Atoms |
Volume of the journal: | 10 |
Issue Number: | 2 |
Collation: | 12 Seiten |
DOI: | 10.26083/tuprints-00021280 |
Corresponding Links: | |
Origin: | Secondary publication DeepGreen |
Abstract: | RAdiation-Detected Resonance Ionization Spectroscopy (RADRIS) is a versatile method for highly sensitive laser spectroscopy studies of the heaviest actinides. Most of these nuclides need to be produced at accelerator facilities in fusion-evaporation reactions and are studied immediately after their production and separation from the primary beam due to their short half-lives and low production rates of only a few atoms per second or less. Only recently, the first laser spectroscopic investigation of nobelium (Z=102) was performed by applying the RADRIS technique in a buffer-gas-filled stopping cell at the GSI in Darmstadt, Germany. To expand this technique to other nobelium isotopes and for the search for atomic levels in the heaviest actinide element, lawrencium (Z=103), the sensitivity of the RADRIS setup needed to be further improved. Therefore, a new movable double-detector setup was developed, which enhances the overall efficiency by approximately 65% compared to the previously used single-detector setup. Further development work was performed to enable the study of longer-lived (t₁/₂>1 h) and shorter-lived nuclides (t₁/₂<1 s) with the RADRIS method. With a new rotatable multi-detector design, the long-lived isotope 254Fm (t₁/₂=3.2 h) becomes within reach for laser spectroscopy. Upcoming experiments will also tackle the short-lived isotope 251No (t₁/₂=0.8 s) by applying a newly implemented short RADRIS measurement cycle. |
Uncontrolled Keywords: | laser spectroscopy, resonance ionization, atomic level scheme, gas cell, radiation detection, heavy actinides |
Status: | Publisher's Version |
URN: | urn:nbn:de:tuda-tuprints-212806 |
Classification DDC: | 500 Science and mathematics > 530 Physics |
Divisions: | 05 Department of Physics > Institute of Applied Physics 05 Department of Physics > Institute of Nuclear Physics |
Date Deposited: | 06 May 2022 11:19 |
Last Modified: | 14 Nov 2023 19:04 |
SWORD Depositor: | Deep Green |
URI: | https://tuprints.ulb.tu-darmstadt.de/id/eprint/21280 |
PPN: | 499802969 |
Export: |
View Item |