TU Darmstadt / ULB / TUprints

Beschreibungslogische Charakterisierung variationaler Geometrien

Zocholl, Maximilian (2021):
Beschreibungslogische Charakterisierung variationaler Geometrien. (Publisher's Version)
Darmstadt, Technische Universität,
DOI: 10.26083/tuprints-00020085,
[Ph.D. Thesis]

[img]
Preview
Text
2021_Dissertation_ZOCHOLL.pdf
Available under: CC-BY-SA 4.0 International - Creative Commons, Attribution ShareAlike.

Download (8MB) | Preview
Item Type: Ph.D. Thesis
Status: Publisher's Version
Title: Beschreibungslogische Charakterisierung variationaler Geometrien
Language: German
Abstract:

Das Konzept dient der Charakterisierung der Lösungsräume von vollständig bestimmten geometrischen Problemen, die Position von Punkten, Geraden und Ebenen implizit durch nichtlineare geometrische Zwangsbedingungen wie Winkel und Distanz beschreiben. Im Allgemeinen besitzt jedes dieser geometrischen Probleme mehrere Lösungen, deren geometrische Interpretationen als variationale Geometrien bezeichnet werden und von denen nicht alle gleichwertig sein müssen. Die Charakterisierung variationaler Geometrien dient deren Unterscheidung und ermöglicht hierdurch deren gezielte Selektierung. Als minimal notwendige Information zur Unterscheidung zweier Lösungen wird die Chiralität zur Disambiguierung der relativen Lage zwischen zwei geometrischen Elementen A,B genutzt, z.B. „A links von B“ oder „A rechts von B“.

Die Anwendbarkeit des Konzepts wird anhand von zweidimensionalen Skizzen und dreidimensionalen Baugruppenmodellen in der rechnergestützten Konstruktion vorgestellt, ist aber auch auf geometrische Probleme anderer Domänen übertragbar, z.B. die Interpretation von sensorbasierten Messungen. Die den variationalen Geometrien zugrunde liegende Technologie, das variationale Design, ermöglicht die Formulierung von geometrischen Zwangsbedingungen zwischen den geometrischen Elementen ohne die Spezifikation von Richtungsinformationen.

Die Defizite existierender Verfahren zur Lösungsselektion bestehen darin, dass diese Richtungsinformationen und Lösungen als gegeben annehmen, sich auf Punkte beschränken und weder vollständig noch korrekt sein müssen.

Zur Überwindung dieser Defizite argumentiert das vorgestellte Konzept, dass eine eindeutige Lösungsselektion nur von einem Verfahren durchgeführt werden kann, dass die vollständige und korrekte Charakterisierung aller variationaler Geometrien eines geometrischen Problems ermöglicht. Das Konzept der Charakterisierung und der Lösungsselektion erfüllt diese Voraussetzung und ermöglicht die Charakterisierung unter Unsicherheit über die Richtung der Zwangsbedingungen sowie unter Unwissen über die Position und Lage der geometrischen Elemente. Die Unsicherheitsinformationen werden explizit durch eine entscheidbare Beschreibungslogik modelliert. Diese ermöglicht die Nutzung von deduktiven Schlussfolgerungsverfahren für die Beantwortung der Fragen ob eine variationale Geometrie geometrisch eindeutig definiert ist und ob die variationale Geometrie der Modellierungsabsicht des Konstrukteurs entspricht.

Der wesentliche Beitrag der Dissertation besteht in der konzeptuellen, deklarativen und prozeduralen Spezifikation der Charakterisierung variationaler Geometrien und der hierdurch ermöglichten Lösungsselektion. Die Bedingungen für die Eindeutigkeit der Lösungsselektion werden über die beschreibungslogische Definition geometrischer Eindeutigkeit formalisiert und sind durch die Formulierung in 27 Teilproblemen, sogenannten Basiskonfigurationen automatisiert generierbar und prüfbar. Weitere Beiträge bestehen in der prototypischen beschreibungslogischen Implementierung von 32 Zwangsbedingungen. Hierfür wurden bestehende Methoden zur Konvertierung von Standards der ISO 10303 in Beschreibungslogik weiterentwickelt. Für die betrachtete Menge geometrischer Probleme werden darüber hinaus Abschätzungen der minimalen und maximalen Lösungsanzahl und notwendiger Lösungsselektoren vorgeschlagen.

Das Konzept wurde prototypisch implementiert, verifiziert und validiert. Das Ergebnis der Verifikation zeigt, dass mit sequenzieller Prüfung der Lösungsselektoren die Berechnungszeit linear zur Anzahl der variationalen Geometrien bleibt. Für die Validierung wurde ein Algorithmus entwickelt mit dem sich geometrische Probleme mit spezifischen Eigenschaften erzeugen lassen.

Das Ergebnis der Validierung zeigt, dass das Konzept variationale Geometrien vollständig und korrekt charakterisiert. Die Übertragbarkeit der Ergebnisse wird durch die Nutzung von Standards wie ISO 10303-108 und OWL 2 erleichtert.

Als Ausblick wurde das Potenzial zur Reduzierung der notwendigen Informationen für eine eindeutige Lösungsselektion identifiziert.

Alternative Abstract:
Alternative AbstractLanguage

The concept provides a means to characterise the solution spaces of fully defined geometrical constraint solving problems defining the relative position of points, lines and planes implicitly by nonlinear geometrical constraints such as angle and distance.

In general, multiple solutions exist for each of those problems. The geometrical interpretation of each solution is referred to as variational geometry. While all variational geometries are equivalent from the perspective of the problem formulation not all variational geometries are equivalent in other interpretation contexts. The characterisation of variational geometries aims at their differentiation in order to allow for their selection, also known as solution selection. In order to disambiguate two sets of the solution space the chirality relation of two geometric elements is used as minimal information.

For computer-aided design the concept is applicable to variational geometries in two-dimensional sketches and three-dimensional assembly models. Other possible application areas include the interpretation of sensor-based measurements. Constraints within variational geometries do not include direction information that is necessary to identify which geometric element defines which other geometric element.

A deficit of existing approaches for solution selection consists in taking the direction information of constraints for granted. Other deficits are their limitation to points and the lacking proof of their completeness and correctness.

To overcome this deficit, a solution selection is required that enables the selection of geometrically unique solutions. In order to guarantee geometrical uniqueness such a solution selection needs to be founded on a concept which enables the characterisation of all variational geometries, given a specific geometrical problem. The proposed concepts for solution selection and characterisation fulfil these conditions. Especially, the concept is designed to enable characterisations under uncertainty with respect to the constraint directions as well as position and orientation of the geometrical elements. The uncertainty information is explicitly modelled in a decidable description logic. Hence, the description logic representation of the geometrical problem may be exploited with deductive reasoning methods in order to assess whether the variational geometry is defined geometrically unique and if the calculated variational geometry corresponds to the modelling intent of the designer.

The main contributions of the dissertation consist in the development of a conceptual, declarative and procedural part. The conditions for a geometrically unique solution selection are formalised in the description logic definition of geometrical uniqueness, building up on the specification of 27 constraint problems, so called basic configurations. The geometrical uniqueness of a given geometrical problem is tested for a corresponding subset of these basic configurations. Additional contributions include the declarative prototype implementation of 32 constraints. A new method for the conversion of ISO 10303 standards into description logics has been developed and applied. For the considered set of geometrical problems upper and lower boundaries are estimated for the number of solutions and the number of solution selectors necessary to attain geometrical uniqueness.

The concept has been implemented, verified and validated. The verification result indicates that a sequential assessment of solution selectors results in linear calculation time with respect to the number of variational geometries. The validation has been performed on a geometry that has been generated with a newly developed algorithm which offers an efficient way to generate variational geometries with specific topological properties.

The validation result demonstrates the completeness and correctness of the characterisation. The transferability of the research results is facilitated by the use of existing standards like ISO 10303-108 and OWL 2.

Finally, opportunities for the further reduction of solution selection information necessary to obtain geometrical unique variational geometries have been identified for future.

English
Place of Publication: Darmstadt
Collation: xviii, 382 Seiten
Classification DDC: 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
500 Naturwissenschaften und Mathematik > 510 Mathematik
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften
Divisions: 16 Department of Mechanical Engineering > Department of Computer Integrated Design (DiK)
Date Deposited: 17 Dec 2021 10:17
Last Modified: 17 Dec 2021 10:17
DOI: 10.26083/tuprints-00020085
URN: urn:nbn:de:tuda-tuprints-200850
Referees: Anderl, Prof. Dr. Reiner ; Kirchner, Prof. Dr. Eckhard
Date of oral examination: 6 July 2021
URI: https://tuprints.ulb.tu-darmstadt.de/id/eprint/20085
PPN:
Export:
Actions (login required)
View Item View Item