Brodrecht, Martin ; Klotz, Edda ; Lederle, Christina ; Breitzke, Hergen ; Stühn, Bernd ; Vogel, Michael ; Buntkowsky, Gerd (2021)
A Combined Solid-State NMR, Dielectric Spectroscopy and Calorimetric Study of Water in Lowly Hydrated MCM-41 Samples.
In: Zeitschrift für Physikalische Chemie, 2018, 232 (7-8)
doi: 10.26083/tuprints-00019681
Article, Secondary publication, Publisher's Version
|
Text
E_U_19_10.1515_zpch-2017-1030.pdf Copyright Information: In Copyright. Download (562kB) | Preview |
Item Type: | Article |
---|---|
Type of entry: | Secondary publication |
Title: | A Combined Solid-State NMR, Dielectric Spectroscopy and Calorimetric Study of Water in Lowly Hydrated MCM-41 Samples |
Language: | English |
Date: | 2021 |
Place of Publication: | Darmstadt |
Year of primary publication: | 2018 |
Publisher: | De Gruyter |
Journal or Publication Title: | Zeitschrift für Physikalische Chemie |
Volume of the journal: | 232 |
Issue Number: | 7-8 |
DOI: | 10.26083/tuprints-00019681 |
Corresponding Links: | |
Origin: | Secondary publication service |
Abstract: | The processes of drying mesoporous silica materials and their refilling with water have been examined by magic-angle spinning (MAS) solid-state NMR, broadband dielectric spectroscopy (BDS), and differential scanning calorimetry (DSC). It is shown that different drying protocols strongly influence the amount and types of hydroxy-species inside the pores. It is found that a very good vacuum (≈10−6 bar) is necessary to remove all H₂O molecules from the silica matrices in order to accurately refill them with very low amounts of water such as e.g. a mono- or submonolayer coverage of the surface. Time-dependent ¹H-NMR-spectra recorded after loading the samples indicate a very specific course of water first existing in a bulk-like form inside the pores and then distributing itself through the pores by hydrogen bonding to surface silanol groups. After assuring accurate sample loading, we were able to investigate lowly hydrated samples of water confined in MCM-41 via DCS and BDS at temperatures below the freezing point of free bulk-water (0°C) and find two non-crystallizing water species with Arrhenius behavior and activation energies of 0.53 eV (51.1 kJ/mol). |
Status: | Publisher's Version |
URN: | urn:nbn:de:tuda-tuprints-196818 |
Additional Information: | Keywords: broadband dielectric spectroscopy; confinement; solid-state NMR; water; wetting |
Classification DDC: | 500 Science and mathematics > 540 Chemistry |
Divisions: | 07 Department of Chemistry > Eduard Zintl-Institut > Physical Chemistry |
Date Deposited: | 01 Oct 2021 11:22 |
Last Modified: | 14 Aug 2023 07:25 |
URI: | https://tuprints.ulb.tu-darmstadt.de/id/eprint/19681 |
PPN: | 51058814X |
Export: |
View Item |