TU Darmstadt / ULB / TUprints

Liquid Crystals and the Primitive Equations: An Approach by Maximal Regularity

Wrona, Marc (2020)
Liquid Crystals and the Primitive Equations: An Approach by Maximal Regularity.
Technische Universität Darmstadt
doi: 10.25534/tuprints-00011551
Ph.D. Thesis, Primary publication

Copyright Information: CC BY-SA 4.0 International - Creative Commons, Attribution ShareAlike.

Download (1MB) | Preview
Item Type: Ph.D. Thesis
Type of entry: Primary publication
Title: Liquid Crystals and the Primitive Equations: An Approach by Maximal Regularity
Language: English
Referees: Hieber, Prof. Dr. Matthias ; Giga, Prof. Dr. Yoshikazu
Date: 2020
Place of Publication: Darmstadt
Date of oral examination: 31 January 2020
DOI: 10.25534/tuprints-00011551

The two models we are considering in this work relate to the Navier-Stokes equations, which describe the motion of a viscous fluid. The first of these two models is the Beris–Edwards model of nematic liquid crystals, which couples the Navier-Stokes equations with a parabolic equation for the molecular orientation described by the Q-tensor. The second topic we are investigating is the primitive equations equations for atmospheric and oceanic flows, which are derived from the Navier–Stokes equations by the hydrostatic approximation.

Alternative Abstract:
Alternative AbstractLanguage

In dieser Dissertation werden zwei Modelle der Strömungsmechanik untersucht, die mit den Navier-Stokes Gleichungen in Verbindung stehen. Das Beris-Edwards Modell für nematische Flüssigkristalle koppelt die Navier-Stokes Gleichungen mit einer parabolischen Gleichung für die molekulare Ausrichtung, welche durch den Q-Tensor modelliert wird. Das zweite Modell, die primitive equations für geophysikalishe Strömungen von Ozean und Atmosphäre, wurde aus den Navier-Stokes Gleichungen durch die hydrostatische Approxiation hergeleitet.

URN: urn:nbn:de:tuda-tuprints-115513
Classification DDC: 500 Science and mathematics > 510 Mathematics
Divisions: 04 Department of Mathematics > Analysis > Angewandte Analysis
04 Department of Mathematics > Analysis > Partial Differential Equations and Applications
Date Deposited: 18 Jun 2020 10:54
Last Modified: 09 Jul 2020 06:28
URI: https://tuprints.ulb.tu-darmstadt.de/id/eprint/11551
PPN: 466725213
Actions (login required)
View Item View Item