Item Type: |
Ph.D. Thesis |
Type of entry: |
Primary publication |
Title: |
Consistent Discretization of Maxwell's Equations on Polyhedral Grids |
Language: |
English |
Referees: |
Lang, Prof. Dr. Jens ; Dyczij-Edlinger, Prof. Dr. Romanus |
Advisors: |
Weiland, Prof. Dr.- Thomas |
Date: |
30 November 2007 |
Place of Publication: |
Darmstadt |
Date of oral examination: |
22 October 2007 |
Abstract: |
This thesis introduces polyhedral cell shapes into the formalism of the Finite Integration Technique (FIT) and shows their practicability in electromagnetic simulations. Emphasis is put on a rigorous mathematical presentation. The semi-discrete (discrete in space but continuous in time) and fully discrete Maxwell's Grid Equations of the FIT are developed from the continuous Maxwell's equations accentuating the connections to differential geometry and topology. The derivation of Maxwell's Grid Equations is valid for a set of arbitrary dual consistent grids allowing also for curved polyhedral cell shapes. This possibility has been known for quite some time, but material relations were only known for special cell shapes like hexahedra, tetrahedra, prisms, pyramids, or dual orthogonal grids. In this thesis, material relations for arbitrary polyhedral grid cells with straight edges and planar faces are derived. Examples from a wide range of electromagnetic applications show the practicability of these polyhedral grid cells in numerical simulations. |
Alternative Abstract: |
Alternative Abstract | Language |
---|
In dieser Arbeit werden Polyederelemente in die Methode der finiten Integration (FIT) eingeführt. Die praktische Anwendbarkeit in elektromagnetischen Simulationen wird gezeigt. Ein weiterer Schwerpunkt ist die rigorose mathematische Einbindung. Die Gitter-Maxwell-Gleichungen der FIT werden in semi-diskreter (diskret im Raum und kontinuierlich in der Zeit) und in voll diskreter Form aus den kontinuierlichen Maxwellschen Gleichungen hergeleitet. Verbindungen zu den Disziplinen der Differentialgeometrie und Topologie werden ersichtlich. Die semi-diskreten und voll diskreten Gitter-Maxwell-Gleichungen gelten in der hergeleiteten Form für beliebige, duale, konsistente Gitter, einschließlich gekrümmten Polyedergittern. Obwohl diese Möglichkeit seit einiger Zeit bekannt ist, konnten die benötigten Materialbeziehungen bisher nur für spezielle Elementformen wie Hexaeder, Tetraeder, Prismen, Pyramiden oder dual orthogonale Gitter hergeleitet werden. In dieser Arbeit werden Materialbeziehungen für beliebige Polyeder mit planaren Flächen und geraden Kanten eingeführt. Beispiele aus verschiedenen elektromagnetischen Bereichen zeigen die praktische Anwendbarkeit in numerischen Simulationen. | German |
|
Uncontrolled Keywords: |
Finite-Integrations-Methode, Finite-Elemente-Methode, Polyedergitter, diskrete Differentialformen, Whitney-Formen |
Alternative keywords: |
Alternative keywords | Language |
---|
Finite-Integrations-Methode, Finite-Elemente-Methode, Polyedergitter, diskrete Differentialformen, Whitney-Formen | German | Finite Integration Technique, Finite Element Method, polyhedral grid, discrete differential forms, Whitney forms | English |
|
URN: |
urn:nbn:de:tuda-tuprints-8955 |
Classification DDC: |
600 Technology, medicine, applied sciences > 620 Engineering and machine engineering |
Divisions: |
18 Department of Electrical Engineering and Information Technology |
Date Deposited: |
17 Oct 2008 09:22 |
Last Modified: |
08 Jul 2020 23:00 |
URI: |
https://tuprints.ulb.tu-darmstadt.de/id/eprint/895 |
PPN: |
|
Export: |
|