TU Darmstadt / ULB / TUprints

In situ and Ex situ TEM Studies of Fluoride Ion Batteries

Fawey, Mohammed :
In situ and Ex situ TEM Studies of Fluoride Ion Batteries.
Technische Universität, Darmstadt
[Ph.D. Thesis], (2017)

[img]
Preview
The updated draft-version - Text (PDF)
M. H. Fawey_PhD thesis.pdf
Available under Only rights of use according to UrhG.

Download (54MB) | Preview
Item Type: Ph.D. Thesis
Title: In situ and Ex situ TEM Studies of Fluoride Ion Batteries
Language: English
Abstract:

Lithium ion batteries (LIBs) are widely used for portable electronics. However, their application is limited because of energy density, safety issues, and the high cost. This necessitates a search for alternative battery technologies. Many alternative battery systems are currently investigated based on different chemistries, which include sodium, magnesium, chloride, aluminum, and potassium based batteries. Rechargeable batteries based on a fluoride anion shuttle are a promising alternative to Li-ion batteries with theoretical energy densities of more than 5000 WhL-1. However, detailed chemical and structural investigations are necessary to understand the structural changes and the degradation mechanisms to improve the performance of fluoride ion batteries. In the present thesis, TEM has been used to study all-solid-state fluoride ion batteries in situ and ex situ. For in situ TEM studies, two all-solid-state fluoride ion battery systems were used; a half-cell consisting of a Bi composite as electrode and La0.9Ba0.1F2.9 as a solid electrolyte; and a full cell consisting of a Cu composite as cathode, a MgF2 composite as anode, and La0.9Ba0.1F2.9 as a solid electrolyte. Optimization of sample preparation was an essential step to enable reliable in situ TEM studies during electrochemical biasing. Challenges during sample preparation, such as re-deposition/metal contamination, contact resistance, porosity of the battery materials and leakage current were resolved using an optimized FIB based approach. The successful preparation has been demonstrated for two fluoride ion battery systems. The in situ TEM studies of the half-cell revealed the fluorination of Bi and Bi2O3 forming BiF3 and BiO0.1F2.8, and the simultaneous reduction of La0.9Ba0.1F2.9 to La and Ba during charging. During discharging, most of the BiF3 was reduced to Bi metal. Comparing the structural changes with the electrochemical charging curve, the main phase formed was the irreversible phase BiO0.1F2.8, leading to the poor reversibility of the half-cell. On the other hand, the TEM studies of the cathode-electrolyte interface of the full cell revealed fluoride migration into the composite cathode during charging resulting in the formation of CuF2, which was absent in the as-prepared state. Due to the high volumetric changes associated with the CuF2 formation, the cell fractured at the cathode-electrolyte interface during the second charging. However, a detailed electrochemical study during discharging was problematic, as a short circuit between cathode and anode dominated the current. In addition, a fluoride ion battery system consisting of a CuF2 composite as cathode, La0.9Ba0.1F2.9 as a solid electrolyte, and a La sheet as anode was studied ex situ in the as-prepared, discharged, and recharged states. The interfacial studies were performed by lifting-out two lamellae from each pellet at the electrodes-electrolyte interfaces using FIB. The TEM studies of the cathode confirmed the defluorination/fluorination during cycling of CuF2/Cu. However, the TEM studies revealed a high oxygen content in the cathode composite explaining the difference between the theoretical capacity of Cu/CuF2 (528 mAh g-1) and the observed capacity during the first discharge (360 mAh g-1). On the anode side, the presence of La2O3 on the surface led to a side reaction by LaOF formation during recharging, which acts as a significant fluoride trap. Therefore, the capacity faded upon cycling to only 165 mAh g-1 in the second discharge. Moreover, The STEM-EDX maps revealed Cu diffusion from the cathode into the electrolyte due to the high volumetric change in the cathode, partially explain the capacity fading.

Alternative Abstract:
Alternative AbstractLanguage
Lithiumion-Batterien (LIBs) werden sehr häufig für mobile Anwendungen verwendet. Jedoch ist das Anwendungspotential aufgrund von Energiedichte, Sicherheitsaspekten, und den hohen Kosten eingeschränkt. Das macht die Suche nach alternativen Batterie-Technologien nötig. Alternative Batteriesysteme werden auf der Basis neuer chemischer Zusammensetzungen entwickelt, was Natrium-, Magnesium-, Chlorid-, Aluminium-, und auch Kalium-basierte Batterien einschließt. Eine vielversprechende Alternative zu Li-Ionen-Batterien mit theoretischen Energie-Dichten von mehr als 5000 WhL-1 sind wieder aufladbare Fluorid-Ionen-basierte Batterien. Die Verbesserung der Fluorid-Ionen-Batterie erfordert umfangreiche chemische und strukturelle Charakterisierungen, um die Strukturumwandlungen und die Degradationsmechanismen zu verstehen. In der vorliegenden Arbeit ist TEM verwendet worden, um die Feststoff-Fluorid-Ionen-Batterien in situ und ex situ zu untersuchen. Für die in situ TEM Studien wurden zwei Systeme von Feststoff Fluorid-Ionen-Batterien verwendet; ein Halbzelle-bestehend aus einem Bi Komposit als Elektrode und La0.9Ba0.1F2.9 als Feststoff-Elektrolyt; und eine Vollzelle bestehend aus einem Cu-Komposit als Kathode, einem MgF2-Komposit als Anode, und La0.9Ba0.1F2.9 als Feststoff-Elektrolyt. Die Optimierung der Probenpräparation ist wesentlich, um zuverlässige in situ TEM Studien während der elektrochemischen Beeinflussung zu erhalten. Herausforderungen während der Probenpräparation, wie z.B. Wiederabscheidung/Metallkontamination, Kontakt-widerstand, Porosität der Elektroden/des Elektrolyten sowie Leckströme wurden unter Anwendung eines optimierten FIB-basierenden Präparationsweges gelöst. Die erfolgreiche Präparation wurde für zwei Fluorid-Ion-Batterie Systeme demonstriert. In situ TEM Studien der Halbzelle zeigten eine Fluorierung von Bi und Bi2O3 unter Bildung von BiF3 und BiO0.1F2.8 und der gleichzeitigen Reduktion von La0.9Ba0.1F2.9 zu La und Ba während des Ladevorganges. Beim Entladen wurde der größte Teil des BiF3 zu metallischem Bi reduziert. Vergleicht man die Strukturumwandlung mit der elektrochemischen Aufladungskurve, zeigt sich die irreversible Bildung von BiO0.1F2.8 als Nebenreaktion, die zur schlechten Wiederaufladbarkeit der Halbzelle führt. Die TEM-Untersuchungen an der Grenzfläche Kathode-Elektrolyt der Vollzelle zeigten nach der Aufladung Fluorid-Migration in die Komposit-Kathode unter Bildung von CuF2, das im Ausgangszustand nicht vorhanden war. Aufgrund der großen volumetrischen Änderung, die mit der CuF2 Bildung verbunden ist, brach die Zelle an der Grenzfläche Kathode-Elektrolyt während des zweiten Ladevorgangs. Problematisch war auch die Entladung, wo ein Kurzschluss zwischen Kathode und Anode den Strom bestimmte. Zusätzlich wurde ein Fluorid-Ionen-Batterie-System, bestehend aus einem CuF2 Komposit als Kathode, La0.9Ba0.1F2.9 als Elektrolyt, und einer La-Folie als Anode, ex situ im Ursprungszustand, im entladenen und im wiederbeladenen Zustand untersucht. Für die Untersuchung der Grenzflächen wurden von jedem Pressling jeweils 2 Lamellen an den Grenzflächen Elektrode-Elektrolyt mittels FIB-Lift-out präpariert. Die TEM-Untersuchungen der Kathode bestätigten die Ab- und Anreicherung von Fluor beim Zyklieren von CuF2/Cu. Jedoch zeigten die TEM-Untersuchungen einen hohen Sauerstoffgehalt in der Komposit-Kathode, wodurch sich der Unterschied zwischen der theoretischen Kapazität von Cu/CuF2 (528 mAh g-1) und der beobachteten Kapazität während der ersten Entladung (360 mAh g-1) erklären läßt. Auf der Anode-Seite führte die Anwesenheit von La2O3 auf der Oberfläche in einer Nebenreaktion während dem Wiederaufladen zu LaOF Bildung, welches als Fluorid-Fänger agierte. Außerdem zeigten STEM-EDX-Elementverteilungsbilder eine Cu-Diffusion von der Kathode in den Elektrolyten aufgrund der großen volumetrischen Änderung in der Kathode, was auch teilweise den Schwund der Kapazität erklären kann.German
Place of Publication: Darmstadt
Classification DDC: 500 Naturwissenschaften und Mathematik > 530 Physik
Divisions: 11 Department of Materials and Earth Sciences > Material Science
Date Deposited: 13 Nov 2017 10:25
Last Modified: 13 Nov 2017 10:25
URN: urn:nbn:de:tuda-tuprints-69330
Referees: Hahn, Prof. Dr. Horst and Kleebe, Prof. Dr. Hans-Joachim
Refereed: 27 October 2017
URI: http://tuprints.ulb.tu-darmstadt.de/id/eprint/6933
Export:
Actions (login required)
View Item View Item

Downloads

Downloads per month over past year