TU Darmstadt / ULB / TUprints

Präzise Positionierung und Orientierung innerhalb von Gebäuden

Norrdine, Abdelmoumen (2009)
Präzise Positionierung und Orientierung innerhalb von Gebäuden.
Book, Primary publication

[img]
Preview
Text
DissertationNorrdine.pdf - Accepted Version
Copyright Information: In Copyright.

Download (6MB) | Preview
Item Type: Book
Type of entry: Primary publication
Title: Präzise Positionierung und Orientierung innerhalb von Gebäuden
Language: German
Referees: Schlemmer, Prof. Dr. Harald ; Motzko, Prof. Dr. Christoph
Date: 2009
Place of Publication: Darmstadt
Publisher: Technische Universität Darmstadt; Geodätisches Institut
Series: Schriftenreihe Fachrichtung Geodäsie Fachbereich Bauingenieurwesen und Geodäsie
Series Volume: 29
Date of oral examination: 15 December 2008
Abstract:

Die vorliegende Arbeit entstand im Rahmen einer Forschungskooperation zwischen der Hochtief AG, dem Institut für Baubetrieb der TU Darmstadt und dem Geodätischen Institut der TU Darmstadt. Das Ziel dieser Arbeit war es, ein präzises, für Baustellen geeignetes UWB Positionierungssystem zu entwickeln. Zusätzlich zu der Position sollte auch die Orientierung einer Digitalkamera bestimmt werden, um Bildaufnahmen während der Ausführungs- und Betriebsphase von Bauwerken zu verorten. Als eine optimale Ergänzung und Unterstützung für die Positionierung wird ein auf quasistatischen Magnetfeldern basierende Positionierungsverfahren vorgestellt, dessen besonderer Vorteil darin liegt, dass es zusätzlich zu der Position die Orientierung ohne Einsatz von Antennenarray liefern kann. Ein wichtiger Schwerpunkt dieser Arbeit bestand zudem in der Entwicklung neuer Algorithmen für die direkte Lösung nichtlinearer geodätischer Probleme am Beispiel des räumlichen Bogenschnitts sowohl mit als auch ohne Überbestimmung. Dazu wird mit Hilfe der Spektralen Theorie auch ein neues Verfahren zur Lösung von räumlichen Streckennetzen vorgestellt

Alternative Abstract:
Alternative AbstractLanguage

The rapid development of information and communication technologies in recent years has opened new fields of application, in which the localization plays a crucial role. The precise determination of the position and the orientation inside buildings is a particular technical challenge, since the classical positioning systems do not meet the specific requirements of precision in indoor environments. Numerous issues are still to be solved, for example: the availability of signals due to shadowing, the reliability of detection due to multipath effects, the accuracy of position and the ability to deliver the 3D or even more the 6D-Position. New technologies applicable for precise indoor localization are ultra wide band (UWB) and pulsed magnetic field. They allow the determination of distances in indoor environments with a very high spatial resolution even through building materials like walls. Thus, exact positioning methods could be applied. To verify the suitability of the UWB technology several stimulations are performed in this dissertation. They are based on a ray-tracing model developed using elementary propagation scenarios, such as direct propagation, reflection and diffraction. The research presented in this dissertation provides a high resolution ultra wideband (UWB) positioning system based on the trilateration principle. Due to the extremely large bandwidth of the UWB signal the developed UWB-ILPS (Indoor Local Positioning System, ILPS) provides a centimeter positioning accuracy in dense multipath indoor environments for the 3D localization. For the position estimation a novel algorithm was developed, which delivers a solution for over determined nonlinear systems of equations without using linearization methods or approximation solutions. In a recursive least squares method additional observations can be added gradually and an adjusted solution can be calculated. Furthermore, to solve n-dimensional dynamic distance networks a new method using the spectral decomposition and the rank properties of the matrix of distance squares, in which the coordinates of the grid points are computed is introduced. Thereby noisy measurements can be corrected and missing ones can be calculated. As an extension to the UWB-ILPS, a positioning system based on artificial magnetic fields is introduced. It is suggested to utilize alternating DC magnetic signals, which show no NLoS (Non Line of Sight) errors or multipath effects. For the computation of the 6D position of the mobile sensor new methods are developed that allow to ameliorate the update rate of the system. Magnetic field measurements are strongly affected by the interferences from the environment and the Earth's magnetic field. To minimize these negative effects, a noise reduction method is implemented by adaptive filtering and reference stations. Keywords: Ultra-wideband (UWB), Positioning, Ranging, Ray Tracing, Delay Estimation, Multipath Channel, Subspace Based Estimation, Adaptive Filtering, Real Time OS, Embedded Systems, Magnetic Field System, Indoor Local Positioning System

English
URN: urn:nbn:de:tuda-tuprints-69112
Classification DDC: 000 Generalities, computers, information > 004 Computer science
500 Science and mathematics > 510 Mathematics
500 Science and mathematics > 550 Earth sciences and geology
600 Technology, medicine, applied sciences > 620 Engineering and machine engineering
Divisions: 18 Department of Electrical Engineering and Information Technology
18 Department of Electrical Engineering and Information Technology > Wireless Sensor Networks
18 Department of Electrical Engineering and Information Technology > Institute for Telecommunications
18 Department of Electrical Engineering and Information Technology > Institute for Telecommunications > Communications Engineering
20 Department of Computer Science > Embedded Systems and Applications
20 Department of Computer Science > Embedded Sensing Systems
Date Deposited: 03 Jan 2019 11:09
Last Modified: 09 Jul 2020 01:54
URI: https://tuprints.ulb.tu-darmstadt.de/id/eprint/6911
PPN: 440613159
Export:
Actions (login required)
View Item View Item