Barnes, William (2016)
Reversible Visual Hemineglect: the Role of Neural Oscillations in Primary Visual Cortex.
Technische Universität Darmstadt
Ph.D. Thesis, Primary publication
|
Text
Thesis Barnes PDF Dec2015.pdf Copyright Information: CC BY-NC-ND 3.0 Unported - Creative Commons, Attribution, NonCommercial, NoDerivs. Download (27MB) | Preview |
Item Type: | Ph.D. Thesis | ||||
---|---|---|---|---|---|
Type of entry: | Primary publication | ||||
Title: | Reversible Visual Hemineglect: the Role of Neural Oscillations in Primary Visual Cortex | ||||
Language: | English | ||||
Referees: | Galuske, Dr Prof Ralf A. W. ; Munk, PD Dr. Matthias H. J. | ||||
Date: | 2016 | ||||
Place of Publication: | Darmstadt | ||||
Date of oral examination: | 16 December 2014 | ||||
Abstract: | Visual hemineglect is a pathology where damage to any of a number of areas in the brain can result in visual stimuli contralateral to neural damage not entering perceptual awareness. In the cat, the superior colliculus (SC) and cortical areas on the medial bank of posterior middle suprasylvian sulcus (pMS) are regions that when unilaterally damaged result in contralateral visual hemineglect. In this dissertation, electrophysiological recordings of population activity in cat primary visual cortex were made while either the SC or pMS were deactivated. The goal of this experimental set- up was to ascertain the effects of SC or pMS deactivation on the electrophysiological population signal as a visual stimulus enters the cortical processing network at its main entry point, primary visual cortex. Four projects were executed for this thesis involving: 1) anesthetized SC-deactivation, 2) anesthetized pMS-deactivation, 3) awake pMS deactivation, and 4) pMS-deactivation in the awake-behaving cat. Advanced recording techniques to monitor neural activity in the awake-behaving cat (project 4) while cortex was both active and deactivated were developed for this thesis to compliment thesis projects 1-3 involving classical recording techniques in animals passively viewing a square-wave visual stimulus. The results are as follows: in the awake cat performing a visual perimetry task (project 4), neural activity when 1) unilateral pMS was deactivated and contralateral stimuli neglected versus when 2) pMS was active and stimuli were attended, reveals a significant drop in high-frequency gamma (52-90 Hz) oscillations and low-frequency theta (4-8 Hz) oscillations bilaterally in primary visual cortex. The drop in gamma and theta power was mirrored in anesthetized recordings during pMS deactivation (project 2). In this experimental set-up the cat was anesthetized and square-wave gratings were used as a visual stimulation. Gamma and theta power decreased during pMS deactivation relative to the condition where pMS was active. A similar trend, though statistically insignificant, were made when performing the same experiment as project 2, but in awake cats (project 3). The lack of statistical significance is presumably due to increased ongoing, internally generated, activity in the awake preparation. The findings in projects 2 & 3 confirm the visual perimetry finding in project 4 with the caveat that the passive viewing projects 2 & 3 yield a cooling-induced interhemispheric imbalance in theta and gamma power, whereas power changes for the awake-behaving cat in project 4 were bilateral with no interhemispheric imbalance. The strong unilateral effect in project 2 is presumably due to anesthesia inhibiting interareal interaction, or could as-well reflect reduced processing demands relative to the perimetry task. The perimerty task is a behavioral task and may necessitate the recruiting of a larger network involving both hemispheres in order to orient attention to a low-salience LED located in the visual periphery. The anesthetized project was repeated, but with SC rather than pMS deactivation (thesis project 1). The SC deactivation led to an ipso deactivation loss of gamma, but not theta power. Taken together, the meaning of the results in projects 1-4 is as follows: unilateral deactivation of the pMS or SC results in a visual hemineglect in the awake behaving animal. Unilateral deactivation of either structure also leads to a loss of gamma power. This loss in gamma power during pMS or SC deactivation lends support to the binding by synchrony hypothesis (Gray et al 1989) whereby high-frequency oscillations act as a carrier frequency through which a larger cortical network can represent a stimulus via synchronous activity in the disparate neural processing nodes. Along this line, loss of gamma power would indicate a break-down in network communication that leads to a neglect of contralateral visual stimuli. A cooling induced interhemispheric imbalance in gamma power, as found in passive-viewing projects 1-3, could explain visual hemineglect because the primary visual cortex respresenting the neglected hemifield has less gamma power than the hemisphere responsible for the intact visual hemispace. However, interhemispheric gamma power imbalance does not occur in the behaving cat. In light of a bilateral loss of gamma power for neglect trials following pMS inactivation in project 4, an explanation beyond interhemispheric gamma power imbalance must be formed to explain behavioral hemineglect, at least with regards to pMS inactivation The loss of theta power for pMS but not SC deactivation lends support to the attention to memory hypothesis (Cabeza et al 2008). This hypothesis views the posterior parietal cortex (PPC), of which pMS is a part, as an area involved in directing attention to internal memories and goals. Anatomical links between the PPC and the hippocampus, where a theta rhythm is generated, may implicate the pMS in more than just reflexive orienting behavior. Moreover, posterior parietal cortex, of which pMS is a key part, is known from anatomical studies (Markov et al 2014) to be one of the network hubs in the brain The loss of theta power following pMS deactivation may indicate a global loss network connectivity with one result being a loss in the ability to create an egocentric coordinate system in the hemispace contralateral to pMS deactivation. Deactivation of the pMS could also lead to a context dependent loss in the ability to retain awareness that behaviorally relevant stimuli have occurred in the hemispace contralateral to pMS deactivation. Both spatial coordinates and memories are functions inextricably intertwined with the hippocampus. Moreover, cross- frequency coupling between theta and gamma is well established. This frequency coupling, with small amplitude gamma oscillation riding on top of large-amplitude theta oscillations, would allow the membrane potentials in participating distributed brain regions to depolarize and simultaneously spike thereby generating a distributed neural signature that could underly perceptual awareness. This binding mechanism appears to be compromised in visual hemineglect. |
||||
Alternative Abstract: |
|
||||
URN: | urn:nbn:de:tuda-tuprints-51931 | ||||
Classification DDC: | 500 Science and mathematics > 500 Science | ||||
Divisions: | 10 Department of Biology ?? fb10_zoologie~znp ?? |
||||
Date Deposited: | 04 Jan 2016 07:38 | ||||
Last Modified: | 15 Jul 2020 09:07 | ||||
URI: | https://tuprints.ulb.tu-darmstadt.de/id/eprint/5193 | ||||
PPN: | 368221105 | ||||
Export: |
View Item |