By combination of FT-IR- and UV-Raman spectroscopy with normal mode analysis, this study analyzes the vibrational structure of silica supported vanadia and titania. Based on these results, structural models are developed for vanadia species under hydrated and dehydrated conditions as well as for titania species under dehydrated conditions. To this end, a novel UV-Raman setup has been developed allowing for resonance enhancement of the silica supported vanadia and titania systems. The use of a tunable solid-state laser (193-420 nm) and a triple spectrometer enables the flexibility necessary for selective resonance enhancement. In accordance with the selection rules of Raman theory the sensitivity of the method was significantly increased and made it possible, for the first time, to measure solid-state systems with a loading density of 0.00001-0.7 Vnm^(-2) and 0.0001-0.7 Tinm^(-2) under hydrated and dehydrated conditions.\\
The investigated samples are based on nanostructured silicon dioxide (SBA-15), which was functionalized using an ion-exchange method and incipient wetness impregnation. UV-Vis analysis of silica supported vanadia indicated the presence of both monomeric and oligomeric surface species under hydrated and dehydrated conditions. In contrast, UV-Vis analysis of silica supported titania revealed the presence of monomeric species with both a tetrahedral and octahedral koordination. FT-IR measurements of silica supported vanadia and titania samples under dehydrated conditions showed absorption signals at 3660 and 3658 cm^(-1), which are consistent with stretch vibrations of hydroxylated surface species.
Previous literature on silica supported vanadia has described a signal at 1020 cm^(-1), which could be verified by the UV-Raman method. It can be attributed to a totally symmetrical V=O stretch vibration due to the occurance of the corresponding overtone at 2039-2045 cm^(-1). Furthermore, under hydrated conditions at low loadings signals at 910-960 cm^(-1) were observed which, on the basis of a combined experimental and theoretical approach, could be attributed to the interphase mode of an unhydroxylated and hydroxylated vanadia species, respectively. Regarding the silica-supported titania samples, a Raman signal at 1150 cm^(-1) could be detected which clearly originates from the titania surface species besides the characteristic Ti-O-Si vibration. The features at 1150 cm^(-1) is attributed to titanium atoms which are incorporated into the silica matrix within the synthesis process.
In the second part of the study, normal modes of the silica supported vanadia and titania species were calculated. To establish a basis for the simulation, several monomeric and dimeric models have been developed and adapted to a POSS molecule. The models were analyzed in detail with regard to the influence of their adaption to the POSS-molecule, hydroxylation of the surface species, and oligomerization, all of which led to a more thorough understanding of the vibrational structure of silica supported surface systems. The most important insight gained from the simulation is that the assumption of a localized vibration within a diatomic oscillator does not sufficiently represent the nature of the molecular vibrations of the silica supported vanadia and titania surface species. Based on the results of the theoretical analysis, normal modes of the surface species may contain force constants of several force constants. Therefore, the force constant, which shares the highest contribution to the displacement of the inner coordinates, determines the character of the vibration. Furthermore, all models showed interphase modes which represent a momentum transfer between the silica support and the surface species. Therefore, the character of these vibrations is not determined by the surface species but rather the silica support. On the basis of a normal mode analysis, the normal modes at 1020 and 1035 cm^(-1) were clearly identified as a V=O stretch vibrations, where the difference is caused by the phase shift between the anchoring V-O-Si vibration.
By combining results from spectroscopy and simulations the surface structure of vanadia and titania species could described in detail. Under highly dispersed conditions the surface structure can not be completely described by an isolated, trigrafted species as has been traditionally proposed in the literature. Instead, the vanadia and titania surface species can oligomerize even under highly dispersed conditions. The present study shows that the assignment of Raman bands is much more complex than previously assumed. Based on a pure spectroscopic or theoretical study an unambigious assignment of the Raman bands ist not possible. However, by combining theoretical and spectroscopic approaches, the present study succeeded in developing a more detailed picture of the surface species under hydrated and dehydrated conditions and deepening the understanding of the vibrational structure of silica supported vanadia and titania surface species.
| English |