TU Darmstadt / ULB / TUprints

Systematic Data Extraction in High-Frequency Electromagnetic Fields

Banova, Todorka :
Systematic Data Extraction in High-Frequency Electromagnetic Fields.
Technische Universität, Darmstadt
[Ph.D. Thesis], (2014)

[img]
Preview
Text
Dissertation_Banova.pdf
Available under Creative Commons Attribution Non-commercial No Derivatives, 2.5.

Download (4MB) | Preview
Item Type: Ph.D. Thesis
Title: Systematic Data Extraction in High-Frequency Electromagnetic Fields
Language: English
Abstract:

The focus of this work is on the investigation of billiards with its statistical eigenvalue properties. Specifically, superconducting microwave resonators with chaotic characteristics are simulated and the eigenfrequencies that are needed for the statistical analysis are computed. The eigenfrequency analysis requires many (in order of thousands) eigenfrequencies to be calculated and the accurate determination of the eigenfrequencies has a crucial significance. Consequently, the research interests cover all aspects from accurate numerical calculation of many eigenvalues and eigenvectors up to application development in order to get good performance out of the programs for distributed-memory and shared-memory multiprocessors. Furthermore, this thesis provides an overview and detailed evaluation of the used numerical approaches for large-scale eigenvalue calculations with respect to the accuracy, the computational time, and the memory consumption.

The first approach for an accurate eigenfrequency extraction takes into consideration the evaluated electric field computations in Time Domain (TD) of a superconducting resonant structure. Upon excitation of the cavity, the electric field intensity is recorded at different detection probes inside the cavity. Thereafter, Fourier analysis of the recorded signals is performed and by means of signal-processing and fitting techniques, the requested eigenfrequencies are extracted by finding the optimal model parameters in the least squares sense.

The second numerical approach is based on a numerical computation of electromagnetic fields in Frequency Domain (FD) and further employs the Lanczos method for the eigenvalue determination. Namely, when utilizing the Finite Integration Technique (FIT) to solve an electromagnetic problem for a superconducting cavity, which enclosures excited electromagnetic fields, the numerical solution of a standard large-scale eigenvalue problem is considered. Accordingly, if the numerical solution of the same problem is treated by the Finite Element Method (FEM) based on curvilinear tetrahedrons, it yields to the generalized large-scale eigenvalue problem. Afterward, the desired eigenvalues are calculated with the direct solution of the large (generalized) eigenvalue formulations. For this purpose, the implemented Lanczos solvers combine two major ingredients: the Lanczos algorithm with polynomial filtering on the one hand and its parallelization on the other.

Alternative Abstract:
Alternative AbstractLanguage
Der Schwerpunkt dieser Arbeit liegt auf der Untersuchung von Billard Resonatoren mit ihren statistischen Eigenschaften der Eigenwertverteilung. Insbesondere werden supraleitende Mikrowellenresonatoren mit chaotischen Eigenschaften simuliert und dabei ihre Eigenfrequenzen bestimmt, die für die statistische Auswertung benötigt werden. Die Eigenfrequenzanalyse erfordert viele (in der Größenordnung von Tausend) Eigenfrequenzen, wobei die genaue Bestimmung der Werte von entscheidender Bedeutung ist. Im Rahmen dieser Arbeit decken die Forschungsinteressen folglich alle Aspekte von der numerischen Berechnung vieler Eigenwerte und Eigenvektoren bis hin zur Anwendungsentwicklung ab, um die zur Verfügung stehenden Distributed-Memory- und Shared-Memory-Multiprozessoren optimal auszunutzen. Außerdem gibt diese Arbeit einen Überblick zur Lösung großer Eigenwertprobleme durch eine detaillierte Auswertung der verwendeten numerischen Ansätze bezüglich der erzielbaren Genauigkeit, der Rechenzeiten und des Speicherbedarfs. Der erste Ansatz für eine präzise Eigenfrequenzextraktion berücksichtigt den berechneten Zeitverlauf des elektrischen Feldes einer supraleitenden Resonanzstruktur. Bei Anregung des Hohlraums wird die elektrische Feldstärke an ausgewählten Beobachtungspunkten im Inneren des Hohlraums aufgenommen. Danach wird eine Fourier-Analyse der erfassten Signale durchgeführt und mittels Signalverarbeitungsverfahren und Anpassungstechniken die gewünschten Eigenfrequenzen auf der Basis optimierter Modellparameter extrahiert. Der zweite numerische Ansatz basiert auf der numerischen Berechnung elektromagnetischer Felder im Frequenzbereich und verwendet die Lanczos Methode zur Eigenwertbestimmung. Basierend auf der Methode der Finiten Integration wird die numerische Lösung eines Standard-Eigenwertproblemes betrachtet, um ein elektromagnetisches Problem für einen supraleitenden Resonator zu lösen. Entsprechend führt eine Diskretisierung desselben Problems mit Hilfe der Finiten Elemente Methode und gekrümmten Tetraedern auf ein großes verallgemeinertes Eigenwertproblem. Zu deren Lösung kombinieren die implementierten Lanczos Löser zwei Hauptbestandteile und verwenden einerseits den Lanczos-Algorithmus mit Polynom-Filterung sowie andererseits eine geeignete Parallelisierung der benötigten Algorithmen.German
Place of Publication: Darmstadt
Uncontrolled Keywords: Cavity resonators, digital signal processing, finite element analysis, eigenvalues and eigenfunctions.
Classification DDC: 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften
Divisions: 18 Department of Electrical Engineering and Information Technology
18 Department of Electrical Engineering and Information Technology > Institute for Computational Electromagnetics
Date Deposited: 11 Aug 2014 10:57
Last Modified: 11 Aug 2014 10:57
URN: urn:nbn:de:tuda-tuprints-41170
Referees: Weiland, Prof. Dr. Thomas and van Rienen, Prof. Dr. Ursula
Refereed: 21 July 2014
URI: http://tuprints.ulb.tu-darmstadt.de/id/eprint/4117
Export:
Actions (login required)
View Item View Item

Downloads

Downloads per month over past year