Johannsen, Daniel (2014)
Modelle der nicht-kompatiblen mikropolaren Plastizität und Kontaktmechanik.
Technische Universität Darmstadt
Ph.D. Thesis, Primary publication
|
Text
Johannsen_Daniel_Dissertation_Online3.pdf Copyright Information: CC BY-NC-ND 2.5 Generic - Creative Commons, Attribution, NonCommercial, NoDerivs . Download (10MB) | Preview |
Item Type: | Ph.D. Thesis | ||||
---|---|---|---|---|---|
Type of entry: | Primary publication | ||||
Title: | Modelle der nicht-kompatiblen mikropolaren Plastizität und Kontaktmechanik | ||||
Language: | German | ||||
Referees: | Tsakmakis, Professor Charalampos | ||||
Date: | 2014 | ||||
Place of Publication: | Darmstadt | ||||
Date of oral examination: | 9 May 2014 | ||||
Abstract: | In dieser Arbeit werden Materialmodelle vorgestellt, die Kopplungseffekte zwischen makro- und mikroskopischen Längenskalenbereiche berücksichtigen. Die Theorie dieser Modelle ist in der Lage, bei einem Übergang zu kleineren Bauteilabmessungen einen wachsenden Einfluss mikroskopischer Materialstrukturen auf das Materialverhalten abzubilden. Ein solches Verhalten wird als Längenskaleneffekt bezeichnet. Die Entwicklung der Modelle wird im Rahmen einer mikropolaren Kontinuumstheorie für große Deformationen durchgeführt. Grundsätzlich lässt sich diese Theorie auf alle Materialklassen anwenden, bei denen eine Substruktur unabhängig von einer übergeordneten makroskopischen Struktur rotieren darf. In dieser Arbeit konzentriert man sich bei der Anwendung der mikropolaren Theorie auf Materialien, die elastoplastisches Verhalten aufweisen. Darüber hinaus wird die Theorie erstmals mit einem reibungsbehafteten mikropolaren Kontaktmodell erweitert. Im Einzelnen enthält das Materialmodell für große Deformationen eine neue Formulierung einer nicht-kompatiblen mikropolaren Plastizität. Ausgehend von diesem Modell wird eine Formulierung für kleine Deformationen vorgestellt. Die Plastizitätsmodelle berücksichtigen sowohl isotrope als auch kinematische Verfestigung. Das Kontaktmodell enthält eine besondere Formulierung der klassischen COULOMB’schen Reibung, die erstmals auf mikropolare Reibung verallgemeinert wurde. Alle Modellformulierungen erfüllen den zweiten Hauptsatz der Thermodynamik und sind damit thermodynamisch konsistent. Die entwickelten Materialmodelle wurden im Rahmen der Finite-Elemente-Methode umgesetzt und in geeignete Computerprogramme implementiert. Es wurden insgesamt drei verschiedene Randwertprobleme mit den hier entwickelten Materialmodellen am Computer simuliert. Alle numerischen Beispiele haben qualitativen Charakter und basieren auf angenommenen Materialparametersätzen. Die Rechnungen ohne Kontakt demonstrieren, dass das Modell grundsätzlich in der Lage ist, Längenskaleneffekte wiederzugeben. Was Kontaktprobleme angeht, so war das primäre Ziel, eine Theorie und ihre numerische Umsetzung herauszuarbeiten. Dies ist auch gelungen, wie anhand eines simulierten Eindruckversuchs nachgewiesen wurde. |
||||
Alternative Abstract: |
|
||||
URN: | urn:nbn:de:tuda-tuprints-40492 | ||||
Classification DDC: | 600 Technology, medicine, applied sciences > 620 Engineering and machine engineering | ||||
Divisions: | 13 Department of Civil and Environmental Engineering Sciences 13 Department of Civil and Environmental Engineering Sciences > Mechanics > Continuum Mechanics |
||||
Date Deposited: | 22 Jul 2014 10:33 | ||||
Last Modified: | 09 Jul 2020 00:44 | ||||
URI: | https://tuprints.ulb.tu-darmstadt.de/id/eprint/4049 | ||||
PPN: | 344019152 | ||||
Export: |
View Item |