Aufgrund der gewachsenen und verbesserten experimentellen Möglichkeiten in den Materialwissen-schaften, wurden zunehmend spezielle Entwicklungen neuer Werkstoffe für ganz bestimmte Anwen-dungen möglich. Hierdurch können diese Anwendungen bzw. Produkte, entsprechend dem wirtschaftlich technologischen Fortschritts Paradigmas, immer weiter optimiert werden. Anders ausgedrückt ist es gegenwärtig erstmals möglich, Werkstoffe aufgrund neuester wissenschaftlicher Methoden für sehr spezielle Anwendungen zu entwickeln bzw. herzustellen oder aber diese weiter zu optimieren. Hinzu kommt die Tatsache, dass in der jüngeren Vergangenheit der Unterschied zwischen wissenschaftlichen Neu- bzw. Weiterentwicklungen im Bereich der Materialwissenschaften und den für die industrielle Herstellung dieser neuen Materialien notwendigen technologischen Verfahren bzw. Prozessen immer geringer wurde. Aus diesem Grunde sind Unternehmen, welche innovative, sehr speziell entwickelte Materialen in ihren Produkten einsetzen, stark daran interessiert, Modelle für die quantitative Beschreibung des physikalischen Verhaltens dieser Werkstoffe zu besitzen, da aus werkstoffwissenschaftlicher Sicht im Wesentlichen meist nur reduzierte qualitative Vorhersagen möglich sind. Des Weiteren ist festzustellen, dass wegen der immer größer werdenden Rechenleistung von Computern und dem Einsatz spezieller Software die Optimierung sowie Entwicklung neuer Produkte mittels Simulationsmethoden immens an Bedeutung gewonnen haben. Aus diesem Grund gewann in der Vergangenheit der Einsatz von Simulationsmethoden wegen der zusätzlich immer größer werdenden wirtschaftlichen Konkurrenz sowie mit den damit verbundenen kürzeren Produktentwicklungszeiten und den zu reduzierenden Kosten immer mehr an Bedeutung. Für explizite Produktentwicklungen mittels computerunter-stützter Simulationsmethoden sind jedoch mathematische Modelle notwendig, welche eine quantitative Beschreibung des Stoffverhaltens innerhalb bestimmter Genauigkeitsschranken sicherstellen. Qualitative materialwissenschaftliche Aussagen sind – wie bereits erwähnt wurde – in diesem Kontext kaum einsetzbar, haben allerdings zur Verifikation der quantitativen Modelle eine überaus wichtige Funktion. Die gegenwärtige Schwierigkeit bei der physikalisch-mathematisch motivierten Stoffmodellierung liegt im komplexen, oft auch sehr heterogenen, mikrostrukturellen Aufbau der Werkstoffe, die aber genau dadurch erst ihre speziellen erwünschten makroskopischen Eigenschaften erhalten und somit zur Optimierung des fertigen Bauteils einen signifikanten Beitrag leisten. In der Vergangenheit war es meist völlig ausreichend, die klassische Theorie der Kontinuumsmechanik für die Stoffmodellierung heranzuziehen, da die Werkstoffe in ihrem inneren Aufbau relativ homogen bzw. mikrostrukturell bei weitem nicht so komplex waren, wie diese es heute sind.
Eine eng in diesem Zusammenhang stehende Entwicklung ist in der strukturellen Miniaturisierung mechanisch belasteter Bauteile gegeben. Mit genau dieser Problematik beschäftigt sich ein Teilgebiet der sogenannten Mikrosystemtechnik. Letztgenannter Teilbereich der Mikrosystemtechnik befasst sich im Wesentlichen mit Konstruktion, Herstellung und Anwendung kleinster mechanischer Bauelemente von wenigen bis mehreren Mikrometern. Man unterscheidet einfache Strukturen (z. B. Gitter, Löcher, Kanäle), Sensoren, Aktoren (z. B. Relais, Schalter, Ventile, Pumpen) und Mikrosysteme (Mikromotoren, Druckköpfe). Zur Herstellung werden Technologien eingesetzt, die auch in der Mikrochip-Fertigung zum Einsatz kommen (z. B. galvanische Verfahren, Ätzverfahren, Lasertechnik), es werden aber auch die Photolithographie, Dünnschicht-, Siebdruck- und andere Techniken genutzt. Es ist offensichtlich, dass auch diese kleinsten Strukturen mechanischen Belastungen während des Betriebs unterworfen sind. Zur Berechnung sowie ingenieurtechnischen Auslegung oder gar Optimierung dieser Bauteile benötigt man aber erweiterte physikalisch-mathematische Modelle die eine Beschreibung der vorliegenden Zustände in ausreichender Genauigkeit ermöglichen, da gebräuchliche Theorien aus der makroskopischen Welt wie bspw. die klassische Theorie der Kontinuumsmechanik auf diese Kleinststrukturen nicht oder nur sehr eingeschränkt anwendbar sind. Der Grund für die Nichtanwendbarkeit von bewährten Modellen aus der makroskopischen Ebene ist vorwiegend darin gegeben, dass diese meist auf einem rein phänomenologischen Ansatz der zu beschreibenden Stoffe basieren. Bei der letztgenannten elementaren Beschreibung betrachtet man die Stoffe bzw. deren Proben als ein System, an dessen Eingang (input) man den zeitlichen Verlauf einer Größe (bspw. Weg), welche im verallgemeinerten Sinn eine äußere Last repräsentiert, anlegt, und das an seinem Ausgang (output) den Verlauf einer anderen Größe (bspw. Kraft) ausgibt, die wiederum eine Reaktion in Form der inneren Spannungen darstellen kann. Eine Theorie, welche die Verknüpfungen von Eingabe und Ausgabe zu beschreiben versucht, ohne dabei die innere Struktur des Systems zu erforschen oder die im Inneren wirkenden Mechanismen nicht im Detail kennt, dieses also als eine Art „black box“ behandelt, wird phänomenologische Theorie genannt.
An dieser Stelle ist es wichtig zu erwähnen, dass sowohl die stark heterogenen mikrostrukturellen Einheiten, aus denen spezielle neu entwickelte Werkstoffe aufgebaut sind, als auch die mikroskopisch kleinen mechanischen Bauteile aus fast denselben elementaren materiellen Objekten (bspw. Kristalle, Körner usw.) bestehen, welche sowohl räumlich-geometrisch ähnliche Ausdehnungen aufweisen als auch physikalisch und chemisch mehr oder weniger identische Eigenschaften zeigen. Aufgrund dieser Verbindung ist es offensichtlich, dass ein Stoffmodell, welches in einem der beiden Anwendungsgebieten erfolgreich eingesetzt werden kann, in den meisten Fällen auch für das jeweils andere Feld Verwendung finden kann, wodurch ein überaus großer Bereich für technisch-wirtschaftliche Applikationen gegeben ist. Wie bereits mehrmals erwähnt, sind die herkömmlichen phänomenologischen Theorien in ihrer konventionellen Darstellung, wie die klassisch makroskopische Materialtheorie der Kontinuumsmechanik, für diese sehr kleinen elementaren materiellen Objekte nicht mehr direkt anwendbar und müssen durch entsprechende Ansätze erweitert werden. Deshalb werden zur quantitativen Beschreibung oft Theorien verwendet, welche die Strukturen auf der Mikroebene in ausreichendem Maß beschreiben und anschließend mittels speziellen Methoden in den Rahmen der klassischen Kontinuumsmechanik miteinbeziehen, woraus erweiterte oder höhere Theorien der Kontinuumsmechanik resultieren. Die so erhaltenen Modelle sind mikrostrukturell motiviert und können deshalb essentielle Größen auf diesen kleinen Ebenen (Skalen) abbilden sowie darüber hinaus das makroskopische Verhalten gut beschreiben. Sie weisen allerdings meist in ihrer mathematischen Komplexität etwas unhandlichere Formen auf als die klassisch phänomenologischen Ansätze, welche jedoch für die erwähnten Problemklassen nicht oder in nur sehr eingeschränktem Maße anwendbar sind. Ein weiterer wichtiger Nebenaspekt stellt die mikromechanische Erklärung makroskopischer Phänomene dar, welche durch diese erweiterten bzw. höheren Theorien der Kontinuumsmechanik möglich ist. | German |