TU Darmstadt / ULB / TUprints

Nanoparticulate Cathode Films for Low Temperature Solid Oxide Fuel Cells

Jaberi Darbandi, Azad (2012)
Nanoparticulate Cathode Films for Low Temperature Solid Oxide Fuel Cells.
Technische Universität Darmstadt
Ph.D. Thesis, Primary publication

[img]
Preview
PDF
Dissertation-_A_J_Darbandi.pdf
Copyright Information: In Copyright.

Download (14MB) | Preview
Item Type: Ph.D. Thesis
Type of entry: Primary publication
Title: Nanoparticulate Cathode Films for Low Temperature Solid Oxide Fuel Cells
Language: English
Referees: Hahn, Professor Horst ; Roth, Professor Christina
Date: 11 September 2012
Place of Publication: Darmstadt
Date of oral examination: 27 March 2012
Abstract:

The thesis aimed to investigate the impact of morphological and compositional architecture on enhancement of electrochemical performance of the cathode. Nanocrystalline particles of cathode materials (La0.75 Sr0.2 Mn O3–δ , La0.6Sr0.4Co0.2Fe0.8O3−δ and La0.25Ba0.25Sr0.5Co0.2Fe0.8O3−δ ) with high phase purity and high specific surface area were synthesized via. Nebulized spray pyrolysis method. The powders were characterized by various analytical methods such as X-ray diffraction, electron microscopy, Inductively Coupled Plasma and Nitrogen adsorption. The hollow sphere morphology of as synthesized powder was modified by application of ultrasonic energy into non-agglomerated nanoparticles. The surface potential behavior of each material system was characterized by Zeta-potential measurement and consequently, the stabilized dispersions of cathode nanoparticles were prepared. Nanoparticulate cathode thin films were deposited by Spin-coating of stabilized dispersions. The half cells (symmetrical samples) were characterized electrochemically by high temperature impedance spectroscopy and the cathode performance were analyzed by the area normalized polarization resistance e.g. Area Specific Resistance (ASR).

A new approach for the preparation of thin film functional cathode layers by spin coating of nanocomposite dispersions has been examined for mixed conductive cathode material systems. The cathodes prepared by this process achieved very high electrochemical activity, as a result of the precise control of the morphology and microstructure of the cathode layers by maximizing the surface area over for the oxygen exchange reaction. Very low cathode polarization resistance realizes the reduction of SOFC working temperature below 500 °C. Therefore, several problems associated with aging, sealing, corrosion etc. over long term operation will be bypassed. Furthermore, the method offers a time saving and cost effective single step coating process compared to the conventional methods for thin film fabrication like sputtering, pulsed laser deposition and metal organic chemical vapor deposition. Moreover, the small thickness (~1 μm) is at least 10–20 times lower than that of cathode layers prepared by conventional methods. This represents not only a considerable reduction in ohmic resistance of the whole cell but also a significant reduction in material costs. This novel preparation technique for nanoparticulate thin cathode films provides an immense benefit for applications in Micro Solid Oxide Fuel Cells operating below 500 °C.

Alternative Abstract:
Alternative AbstractLanguage

Das Ziel dieser Arbeit war es, den Einfluss von der morphologischen Architektur und die Zusammensetzung des Kathodenmaterials bei der Hochtemperatur Festoxidbrennstoffzelle auf elektrochemische Effizienz der Zelle zu studieren. Nanostrukturierte Partikeln von Kathodenmaterialien (La0.75Sr0.2MnO3–δ , La0.6Sr0.4Co0.2Fe0.8O3−δ und La0.25Ba0.25Sr0.5Co0.2Fe0.8O3−δ) wurden durch Nebulized Spray Pyrolyse mit hoher spezifischer Oberfläche und hoher Reinheit synthetisiert. Die Proben wurden durch verschiedenen analytischen Methoden sowie Röntgen Diffraktometrie, Elektronenmikroskopie, ICP-OES und Stickstoffadsorption charakterisiert. Die typische Hohlkugeln Morphologie vom Ausgangsmaterial, entstehend bei Spray Pyrolyse, wurde durch Anwendung der Ultraschalenergie modifiziert. Das Verhalten von Oberflächenpotential der Partikel bei allen drei Materialsystemen wurde durch Zeta-Potential Messung studiert und infolgedessen wurden die Dispersionen aus Kathodenmaterialien stabilisiert. Nanopartikulare Dünnschichtkathoden wurden mittels Spin-coating Verfahren hergestellt. Die symmetrische Halb-Zellen wurden elektrochemisch mittels Hochtemperatur Impedanz Spektroskopie charakterisiert und die elektrochemische Effizienz der Kathodenschicht wurde mittels flächennormierten Polarisationswiderstand analysiert.

Im Rahmen dieser Arbeit wurde eine neue Methode zur Herstellung der Nanopartikularen Dünnschichtkathoden durch Spin-Coating der Nanokomposit-Dispersionen entwickelt. Die Dünnschichtkathoden hergestellt, das neue Verfahren weist eine hohe elektrochemische Aktivität zur Reduzierung der Sauerstoffmolekülen auf. Die hohe elektrochemische Aktivität ist auf präzis einstellbare Morphologie und Mikrostruktur der Kathodenschicht zurückzuführen. Die niedrige Polarisationswerte von Kathodenschicht ermöglichen den Betrieb einer Festoxidbrennstoffzelle unterhalb 500 °C und dadurch sind mehrere Probleme im Bezug auf Degradation, Dichtung und Korrosion der Zelle beim langzeitbetrieb überwunden.

German
URN: urn:nbn:de:tuda-tuprints-31055
Classification DDC: 500 Science and mathematics > 500 Science
500 Science and mathematics > 530 Physics
500 Science and mathematics > 540 Chemistry
600 Technology, medicine, applied sciences > 620 Engineering and machine engineering
Divisions: 11 Department of Materials and Earth Sciences
Date Deposited: 14 Sep 2012 08:26
Last Modified: 09 Jul 2020 00:12
URI: https://tuprints.ulb.tu-darmstadt.de/id/eprint/3105
PPN: 308586085
Export:
Actions (login required)
View Item View Item