TU Darmstadt / ULB / TUprints

Non-uniform deformable volumetric objects for medical organ segmentation and registration

Erdt, Marius (2012)
Non-uniform deformable volumetric objects for medical organ segmentation and registration.
Technische Universität Darmstadt
Ph.D. Thesis, Primary publication

[img]
Preview
Dissertation Marius Erdt - PDF
DissertationMariusErdtFinal.pdf
Copyright Information: In Copyright.

Download (14MB) | Preview
Item Type: Ph.D. Thesis
Type of entry: Primary publication
Title: Non-uniform deformable volumetric objects for medical organ segmentation and registration
Language: English
Referees: Sakas, Prof. Dr.- Georgios ; Fellner, Prof. Dr. Dieter ; Vogl, Prof. Dr. Thomas
Date: 13 June 2012
Place of Publication: Darmstadt
Date of oral examination: 13 June 2012
Abstract:

In medical imaging, large amounts of data are created during each patient examination, especially using 3-dimensional image acquisition techniques such as Computed Tomography. This data becomes more and more difficult to handle by humans without the aid of automated or semi-automated image processing means and analysis. Particularly, the manual segmentation of target structures in 3D image data is one of the most time consuming tasks for the physician in the context of using computerized medical applications. In addition, 3D image data increases the difficulty of mentally comparing two different images of the same structure. Robust automated organ segmentation and registration methods are therefore needed in order to fully utilize the potentials of modern medical imaging. This thesis addresses the described issues by introducing a new model based method for automated segmentation and registration of organs in 3D Computed Tomography images. In order to be able to robustly segment organs in low contrast images, a volumetric model based approach is proposed that incorporates texture information from the model’s interior during adaptation. It is generalizable and extendable such that it can be combined with statistical shape modeling methods and standard boundary detection approaches. In order to increase the robustness of the segmentation in cases where the shape of the target organ significantly deviates from the model, local elasticity constraints are proposed. They limit the flexibility of the model in areas where shape deviation is unlikely. This allows for a better segmentation of untrained shapes and improves the segmentation of organs with complex shape variation like the liver. The model based methods are evaluated on the liver in the portal venous and arterial contrast phase, the bladder, the pancreas, and the kidneys. An average surface distance error between 0.5 mm and 2.0 mm is obtained for the tested structures which is in most cases close to the interobserver variability between different humans segmenting the same structure. In the case of the pancreas, for the first time, an automatic segmentation from single phase contrast enhanced CT becomes feasible. In the context of organ registration, the developed methods are applied to deformable registration of multi-phase contrast enhanced liver CT data. The method is integrated into a clinical demonstrator and is currently in use for testing in two clinics. The presented method for automatic deformable multi-phase registration has been quantitatively and qualitatively evaluated in the clinic. In nearly all tested cases, the registration quality is sufficient for clinical needs. The result of this thesis is a new approach for automatic organ segmentation and registration that can be applied to various clinical problems. In many cases, it can be used to significantly reduce or even remove the amount of manual contour drawing. In the context of registration, the approach can be used to improve clinical diagnosis by overlaying different images of the same anatomical structure with higher quality than existing methods.

Alternative Abstract:
Alternative AbstractLanguage

In der vorliegenden Arbeit wird ein neues Verfahren zur Segmentierung und Registrierung von Organen in Aufnahmen der Computertomographie vorgestellt. Dabei wird zunächst ein neuartiges Klassifikationschema zur Einordnung von Segmentierungs- und Registrierungsmethoden entwickelt. Hierauf aufbauend, werden modellbasierte Verfahren ausgewählt und weiterentwickelt. Hauptbeiträge sind die Entwicklung eines neuartigen volumetrischen Formmodells sowie die Entwicklung einer Methode zur lokalen Formbeschränkung von punktbasierten Formmodellen. Durch die vorgestellten Verfahren lassen sich zwei wichtige Probleme modellbasierter Segmentierung und Registrierung lösen: die robuste Segmentierung und Registrierung schwach kontrastierter Strukturen in CT-Aufnahmen sowie eine robuste Anpassung an komplexe Formen, die von der Menge gelernter Beispielformen abweichen. Die entwickelten Methoden werden anhand klinischer Fragestellungen evaluiert. Im Kontext der Segmentierung von Organen wird eine Genauigkeit erreicht, welche in den meisten Fällen ausreicht, um einen Großteil der manuellen Konturierung zu ersetzen. Eine Anwendung der Verfahren in der klinischen Praxis stellt für den Arzt eine Minderung des Zeitaufwandes für die Konturierung dar. Dies wiederum stellt in Aussicht, dass in Zukunft mehr Patienten von den Fortschritten in der medizinischen Bildgebung und in computergestützten Applikationen profitieren können. Im Rahmen der Registrierung von Organen werden Mehrphasen-CT-Aufnahmen der Leber miteinander registriert. Durch die präzise Überlagerung der Aufnahmen wird dem Arzt der kognitiv hochkomplexe Vergleich von wechselseitig sichtbaren Strukturen abgenommen. Dies stellt eine Verbesserung der Diagnose in der klinischen Praxis und somit eine patientenspezifischere Behandlung in Aussicht. Darüber hinaus können bestehende Planungssysteme durch den Einbezug von Mehrphasenplanungsdaten ergänzt und verbessert werden.

German
URN: urn:nbn:de:tuda-tuprints-30216
Classification DDC: 000 Generalities, computers, information > 004 Computer science
600 Technology, medicine, applied sciences > 610 Medicine and health
Divisions: 20 Department of Computer Science > Bildverstehen
20 Department of Computer Science > Interactive Graphics Systems
Date Deposited: 03 Jul 2012 12:58
Last Modified: 09 Jul 2020 00:10
URI: https://tuprints.ulb.tu-darmstadt.de/id/eprint/3021
PPN: 386255970
Export:
Actions (login required)
View Item View Item