TU Darmstadt / ULB / TUprints

Interferometry with Bose-Einstein Condensates in Microgravity

Müntinga, H. ; Ahlers, H. ; Krutzik, M. ; Wenzlawski, A. ; Arnold, S. ; Becker, D. ; Bongs, K. ; Dittus, H. ; Duncker, H. ; Gaaloul, N. ; Gherasim, C. ; Giese, E. ; Grzeschik, C. ; Hänsch, T. W. ; Hellmig, O. ; Herr, W. ; Herrmann, S. ; Kajari, E. ; Kleinert, S. ; Lämmerzahl, C. ; Lewoczko-Adamczyk, W. ; Malcolm, J. ; Meyer, N. ; Nolte, R. ; Peters, A. ; Popp, M. ; Reichel, J. ; Roura, A. ; Rudolph, J. ; Schiemangk, M. ; Schneider, M. ; Seidel, S. T. ; Sengstock, K. ; Tamma, V. ; Valenzuela, T. ; Vogel, A. ; Walser, R. ; Wendrich, T. ; Windpassinger, P. ; Zeller, W. ; Zoest, T. van ; Ertmer, W. ; Schleich, W. P. ; Rasel, E. M. (2024)
Interferometry with Bose-Einstein Condensates in Microgravity.
In: Physical Review Letters, 2013, 110 (9)
doi: 10.26083/tuprints-00027293
Article, Secondary publication, Publisher's Version

[img] Text
PhysRevLett.110.093602.pdf
Copyright Information: In Copyright.

Download (1MB)
[img] Text (Supplementary Materia)
methods_updatedrefs.pdf
Copyright Information: In Copyright.

Download (778kB)
Item Type: Article
Type of entry: Secondary publication
Title: Interferometry with Bose-Einstein Condensates in Microgravity
Language: English
Date: 12 August 2024
Place of Publication: Darmstadt
Year of primary publication: 25 February 2013
Place of primary publication: College Park, MD
Publisher: American Physical Society
Journal or Publication Title: Physical Review Letters
Volume of the journal: 110
Issue Number: 9
Collation: 5 Seiten
DOI: 10.26083/tuprints-00027293
Corresponding Links:
Origin: Secondary publication service
Abstract:

Atom interferometers covering macroscopic domains of space-time are a spectacular manifestation of the wave nature of matter. Because of their unique coherence properties, Bose-Einstein condensates are ideal sources for an atom interferometer in extended free fall. In this Letter we report on the realization of an asymmetric Mach-Zehnder interferometer operated with a Bose-Einstein condensate in microgravity. The resulting interference pattern is similar to the one in the far field of a double slit and shows a linear scaling with the time the wave packets expand. We employ delta-kick cooling in order to enhance the signal and extend our atom interferometer. Our experiments demonstrate the high potential of interferometers operated with quantum gases for probing the fundamental concepts of quantum mechanics and general relativity.

Status: Publisher's Version
URN: urn:nbn:de:tuda-tuprints-272933
Classification DDC: 500 Science and mathematics > 530 Physics
Divisions: 05 Department of Physics > Institute of Applied Physics
Date Deposited: 12 Aug 2024 09:58
Last Modified: 13 Sep 2024 06:31
URI: https://tuprints.ulb.tu-darmstadt.de/id/eprint/27293
PPN: 521355656
Export:
Actions (login required)
View Item View Item