TU Darmstadt / ULB / TUprints

Anion Storage Chemistry of Organic Cathodes for High‐Energy and High‐Power Density Divalent Metal Batteries

Xiu, Yanlei ; Mauri, Anna ; Dinda, Sirshendu ; Pramudya, Yohanes ; Ding, Ziming ; Diemant, Thomas ; Sarkar, Abhishek ; Wang, Liping ; Li, Zhenyou ; Wenzel, Wolfgang ; Fichtner, Maximilian ; Zhao‐Karger, Zhirong (2023)
Anion Storage Chemistry of Organic Cathodes for High‐Energy and High‐Power Density Divalent Metal Batteries.
In: Angewandte Chemie International Edition, 2023, 62 (2)
doi: 10.26083/tuprints-00023697
Article, Secondary publication, Publisher's Version

[img] Text
ANIE_ANIE202212339.pdf
Copyright Information: CC BY-NC 4.0 International - Creative Commons, Attribution NonCommercial.

Download (17MB)
[img] Text (Supplement)
anie202212339-sup-0001-misc_information.pdf
Copyright Information: CC BY-NC 4.0 International - Creative Commons, Attribution NonCommercial.

Download (1MB)
Item Type: Article
Type of entry: Secondary publication
Title: Anion Storage Chemistry of Organic Cathodes for High‐Energy and High‐Power Density Divalent Metal Batteries
Language: English
Date: 28 April 2023
Place of Publication: Darmstadt
Year of primary publication: 2023
Publisher: Wiley-VCH
Journal or Publication Title: Angewandte Chemie International Edition
Volume of the journal: 62
Issue Number: 2
Collation: 8 Seiten
DOI: 10.26083/tuprints-00023697
Corresponding Links:
Origin: Secondary publication DeepGreen
Abstract:

Multivalent batteries show promising prospects for next‐generation sustainable energy storage applications. Herein, we report a polytriphenylamine (PTPAn) composite cathode capable of highly reversible storage of tetrakis(hexafluoroisopropyloxy) borate [B(hfip)₄] anions in both Magnesium (Mg) and calcium (Ca) battery systems. Spectroscopic and computational studies reveal the redox reaction mechanism of the PTPAn cathode material. The Mg and Ca cells exhibit a cell voltage >3 V, a high‐power density of ∼∼3000 W kg⁻¹ and a high‐energy density of ∼∼300 Wh kg⁻¹, respectively. Moreover, the combination of the PTPAn cathode with a calcium‐tin (Ca−Sn) alloy anode could enable a long battery‐life of 3000 cycles with a capacity retention of 60 %. The anion storage chemistry associated with dual‐ion electrochemical concept demonstrates a new feasible pathway towards high‐performance divalent ion batteries.

Uncontrolled Keywords: Anion Storage Chemistry, Divalent Metal Ion Battery, Organic Cathode
Status: Publisher's Version
URN: urn:nbn:de:tuda-tuprints-236970
Classification DDC: 500 Science and mathematics > 540 Chemistry
600 Technology, medicine, applied sciences > 620 Engineering and machine engineering
600 Technology, medicine, applied sciences > 660 Chemical engineering
Divisions: 11 Department of Materials and Earth Sciences > Material Science > In-situ electron microscopy
Date Deposited: 28 Apr 2023 13:04
Last Modified: 14 Nov 2023 19:05
SWORD Depositor: Deep Green
URI: https://tuprints.ulb.tu-darmstadt.de/id/eprint/23697
PPN: 509346367
Export:
Actions (login required)
View Item View Item