TU Darmstadt / ULB / TUprints

Multiple weak shock waves induced by heavy ion beams in solid matter

Constantin, Carmen (2002)
Multiple weak shock waves induced by heavy ion beams in solid matter.
Technische Universität
Ph.D. Thesis, Primary publication

[img]
Preview
PDF
thes.pdf
Copyright Information: In Copyright.

Download (4MB) | Preview
Item Type: Ph.D. Thesis
Type of entry: Primary publication
Title: Multiple weak shock waves induced by heavy ion beams in solid matter
Language: English
Referees: Mulser, Prof. Dr. Peter
Advisors: Hoffmann, Prof. Dr. Dieter H. H.
Date: 27 June 2002
Place of Publication: Darmstadt
Date of oral examination: 6 May 2002
Abstract:

High energy density in matter is of fundamental interest for various fields of science, including plasma physics, astrophysics, geophysics and applications such as possible future energy sources based on inertial confinement fusion. Intense, relativistic heavy ion beams are ideally suited to produce high energy density in matter. The heavy ion synchrotron SIS-18 at the Gesellschaft fuer Schwerionenforschung (GSI) can supply intense ion beam bunches, of about 5 109 particles for U92+, delivered in 550 ns long pulses. This leads to a specific energy deposition of about 1 kJ/g in solid matter which creates solid density plasmas at relatively low temperatures (~1 eV). The ion beam driven pressures of up to 100 kbar generate weak shock waves that compress solid matter to a density ratio of up to 1.1. The main subject of the work presented in this thesis is an experimental study of heavy ion generated shock waves in solid targets and investigations of the properties of the compressed material. In these experiments a multi-layered target was used, consisting of a solid metal (Al, Cu, Fe or Pb) followed by a transparent material (plexiglass) and a confiner plate made of Al. The thickness of the metal layer was chosen such that the entire beam was stopped in this layer and high pressure was generated in the beam deposition region. This high pressure launched a shock wave that travelled into the plexiglass layer which, due to its transparency, served as a diagnostic window. A number of different diagnostic methods were developed to measure the stress induced by the heavy ions in targets, used to achieve cold compression. During an experiment with a Kr ion beam, shock velocities were measured for the first time by one- and two-dimensional schlieren techniques, which allow a good visualization of the multiple- and reflected shock waves. For pressures of up to 15 kbar, shock velocities in plexiglass of about 3.5 km/s were determined, a value which is above the sound velocity of this material (2.6 km/s). The parameters measured for different metallic absorbents, i.e. Cu, Fe and Pb were in good agreement with theoretical values given by a 2D hydro-code. An increase of temperature in the plexiglass of only 4 K during the compression process was found. The same type of solid target in combination with other ion beams (U or Au) were investigated by imaging interferometric techniques and the pressures were directly measured by using calibrated piezo-electric gauges. The data resulting from the interferometric and the laser deflection determinations of refractive index gradients were compared and they showed a good agreement. Useful informations about the hydrodynamical expansion of the heated matter were obtained by backlighting shadowgraphic recordings, performed time- and space resolved. Velocities of several hundreds of m/s were determined. Besides metallic targets, rare-gas cryogenic crystals were also studied, both by shadowgraphy and time-resolved spectroscopy in visible and vacuum-ultraviolet (VUV) regions. The experiments described hereby provide details about the material compressed by multiple-weak shock waves and can be useful in understanding the cold compression of matter scheme, in the heavy-ion beam driver approach. They also constitute a benchmark tool for simulation codes and equation-of- state (EOS) tables. Based on these observations, a further development of experimental methods can be achieved to investigate the compression of matter with higher intensities and deposition power delivered by future heavy ion beams.

Alternative Abstract:
Alternative AbstractLanguage

Die Erzeugung und Untersuchung von hoher Energiedichte in Materie ist von grundlegender Bedeutung fuer viele verschiedene Forschungsgebiete, wie die Plasmaphysik, Astrophysik, Geophysik und fuer Anwendungen wie die Traegheitsfusion als moegliche zukuenftige Energiequelle. Relativistische Schwerionenstrahlen sind in vielerlei Hinsicht ideal fuer die Erzeugung von hoher Energiedichte in Materie geeignet. Aufgrund ihrer grossen Reichweite, dringen sie tief in Festkoerper ein und erzeugen so relativ grosse Volumina stark gekoppelter Plasmen. Das Schwerionensynchrotron SIS-18 an der Gesellschaft fuer Schwerionenforschung (GSI) stellt intensive Schwerionenstrahlen mit circa 109 U92+ Ionen in 550 ns kurzen Pulsen zur Verfuegung. Als Folge der Energiedeposition von mehr als 1 kJ/g werden Plasmen mit fast Festkoerperdichte bei relativ geringen Temperaturen (~ 1 eV) erzeugt. Die induzierten Druecke, die im Bereich von einigen zehn kbar liegen, erzeugen schwache Schockwellen, die die Materie bis zu einem Faktor von 1.1 komprimieren. Sie stellen die Grundlage dieser Arbeit dar, die die experimentellen Moeglichkeiten zur Untersuchung schwerionengeheizter Festkoerpertargets beschreibt. Eine Vielzahl verschiedener Diagnostik- Verfahren wurde angewandt, um die Druckwellen zu untersuchen, die von dem Schwerionenstrahl in mehrschichtigen Targets induziert und fuer eine kalte Kompression verwendet werden. Der Strahl wird in einem absorbierenden Material komplett gestoppt, das an ein transparentes Medium (Plexiglas) als 'Fenster' fuer die Diagnostik gekoppelt ist. Schockgeschwindigkeiten wurden detailliert mit einer Schlierendiagnostik vermessen, mit der zum ersten Mal auch multiple und reflektierte Druckwellen beobachtet werden konnten. Die gemessenen Geschwindigkeiten in Plexiglas erreichen Werte von bis zu 3.5 km/s und liegen somit deutlich ueber der Schallgeschwindigkeit des Materials (2.6 km/s). Die experimentellen Daten wurden mit Rechnungen eines zweidimensionalen hydrodynamischen Codes (BIG-2) verglichen, die eine gute Uebereinstimmung ergaben. Waehrend der Kompression steigt die Temperatur nur um circa 4 K. In weiteren Experimenten mit anderen Targetkonfigurationen und Ionenstrahlen wurden quantitative Messungen mit einem Interferometer durchgefuehrt. Der Druck wurde direkt durch geeichte piezoelektrische Sonden bestimmt. Die interferometrischen Messungen wurden mit Ergebnissen von einer weiteren Diagnostik verglichen, die Gradienten des Brechungsindex direkt durch die Ablenkung eines Laserstrahls bestimmt. Auch diese beiden Messmethoden zeigten eine sehr gute Uebereinstimmung. Wichtige Informationen ueber die hydrodynamische Expansion des geheizten Materials konnte durch orts- und zeitaufgeloeste Schattenfotographie gewonnen werden. Expansionsgeschwindigkeiten von einigen hundert m/s wurden gemessen. Neben metallischen Targets wurden auch kryogene Edelgaskristalle sowohl durch Schattenfotographie als auch durch zeitaufgeloeste Spektroskopie im sichtbaren und im VUV-Spektralbereich untersucht. Die hier beschriebenen Experimente liefern eine Vielzahl an Details ueber Materie, die durch multiple Schockwellen komprimiert wurde. Die Daten bilden eine solide Basis fuer das Verstaendnis der kalten Kompression mit Schwerionenstrahlen. Sie dienen ausserdem zum Testen von Simulations-Codes und von Zustandsgleichungstabellen (EOS). Die Entwicklung neuer Diagnostiken wird durch diese Daten unterstuetzt und Experimente zur Kompression von Materie bei hoeheren Stahlintensitaeten und Energiedepositionen in zukuenftigen Schwerionenstrahlen koennen leichter vorbereitet werden.

German
URN: urn:nbn:de:tuda-tuprints-2256
Divisions: 05 Department of Physics
Date Deposited: 17 Oct 2008 09:21
Last Modified: 08 Jul 2020 22:43
URI: https://tuprints.ulb.tu-darmstadt.de/id/eprint/225
PPN:
Export:
Actions (login required)
View Item View Item