ZUSAMMENFASSUNG Bodenorganismen, insbesondere Pilze und Mikroarthropoden bilden treibende Kräfte für die Wiederaufbereitung organischen Materials und beeinflussen hierdurch die Energieflüsse terrestrischer Ökosysteme. Pilze unterliegen einer Vielfalt antagonistischer Einflüsse, z.B. werden sie von Pilzfressern konsumiert. Potenzielle Abwehrmechanismen gegen Fraßfeinde, wie die im Boden häufig vorkommenden Collembolen, sind dabei wenig untersucht. In der vorliegenden Arbeit wurde der Einfluss von Sekundärmetaboliten von Pilzen auf Collembolen untersucht. In Analogie zu den detailliert untersuchten Wechselwirkungen zwischen Pflanzen und Herbivoren wurde angenommen, dass pilzliche Sekundärmetabolite eine wichtige Rolle für die Abwehr von Fraßfeinden spielen. Es wurden drei übergreifende Hypothesen untersucht: H1. Sekundärmetabolite spielen eine wichtige Rolle in der Kommunikation zwischen Collembolen und Pilzen. H2. Collembola detektieren olfaktorische Signale der Pilze, pilzliche Toxizität und modifizieren ihr Verhalten. H3. Pilzliche Sekundärmetabolite in der Nahrung von Collembolen veränderen deren Genexpression, was in Transkriptanalysen detektiert werden kann. Zur Untersuchung dieser Hypothesen wurden drei experimentelle Studien durchgeführt. H1. Das erste Experiment untersuchte den Einfluss pilzlicher Sekundärmetabolite auf Reproduktionsparameter von Collembolen. Verfüttert wurden Einzel- und Mischdiäten bestehend aus Pilzarten/-stämmen verschiedener Toxizität, die mit stabilen Isotopen markiert waren (13C und 15N). Vier toxindefiziente knock out Mutanten von Aspergillus nidulans, eine regulatorische mit ausgeschalteter Sterigmatocystinproduktion und drei funktionale biosynthetische Vorstufen, wurden in einem Fütterungsexperiment als Einzelund Mischdiäten eingesetzt. Der von Collembolen aufgenommene Kohlenstoff einzelner Pilze in Mischdiäten wurde durch den Einbau von stabilen Isotopen verfolgt. Die Untersuchung diente einem tieferen Verständnis der Bedeutung pilzlicher Sekundärmetabolite, insbesondere Sterigmatocystin, für die Fitness von Collembolen. Zudem wurde die Fraktionierung von stabilen Isotopen in Abhängigkeit pilzlicher Sekundärmetabolite in der Nahrung analysiert. ZUSAMMENFASSUNG viii Es wurde angenommen, dass (i) die Präsenz von Sterigmatocystin und seiner Vorstufen in Mutanten von A. nidulans die Fitness von Collembolen beeinträchtigt, (ii) sich Mischkost durch Verdünnung toxischer Subtanzen vorteilhaft auf die Fitness von Collembolen auswirken, und dass (iii) die Fraktionierung von 13C und 15N im Gewebe von Collembolen mit steigender Toxizität der Pilzstämme zunimmt. Tatsächlich veränderte Sterigmatocystin die Fitness der Collembolen, wobei die toxische Wirkung allerdings nicht parallel zu knockout Mutanten mit vermindertem Sekundärstoffwechsel abnahm. Die Hypothese, dass Mischdiäten zu einer Verdünnung von Toxinen führen, wurde generell bestätigt, wobei die untersuchten Collembolenarten jedoch unterschiedlich reagierten. Insgesamt weisen die Ergebnisse auf artspezifische Anpassungen von Collembolen an pilzliche Toxine hin. Die Hypothese, dass die Fraktionierung stabiler Isotope (13C und 15N) von pilzlichen Toxinen abhängt, wurde teilweise bestätigt. Die Ergebnisse deuten daraufhin, dass pilzliche Toxine für die Fraktionierung stabiler Isotope von größerer Bedeutung sind als der Gehalt von Nährstoffen. H2. Das zweite Experiment untersuchte die Fähigkeit von Collembolen, Toxizität von Pilzen durch olfaktorische Signale wahrzunehmen. In separaten Ansätzen wurden die folgenden Hypothesen geprüft: (i) Collembolen erkennen Pilzarten/–stämme mit variierendem Sekundärmetabolitgehalt olfaktorisch, (ii) Collembolen differenzieren zwischen Pilzen, die von Artgenossen befressen wurden, und nicht zuvor attackierten Pilzen, und (iii) Fraß von Pilzen durch Collembolen verändert die Transkription pilzlicher Sekundärmetabolite in Ascomycota (A. nidulans) und Basidiomycota (Laccaria bicolor). Collembolen nahmen olfaktorische Signale von Pilzen wahr, was sich in veränderter Bewegungsrichtung äußerte. Sie bevorzugten dabei Pilzstämme mit vermindertem Gehalt von Sekundärmetaboliten, insbesondere A. nidulans ΔLaeA mit stark reduziertem Sekundärmetabolitanteil. Olfaktorische Signale von Pilzen, die von Artgenossen befressen worden waren, veränderten das Wahlverhalten bei zwei der drei getesteten Collembolaarten (Heteromurus nitidus und Supraphorura furcifera), wobei die Tiere den unbefressenen Pilz bevorzugten. Jedoch trat die Bevorzugung bei S. furcifera nur bei zuvor intensiv befressenen Pilzen auf, was wiederum für eine artspezifische Reaktion bei Collembolen spricht. Erstaunlicherweise wurde durch Fraß von Collembolen keine signifikante Änderung der Genexpression in A. nidulans und L. bicolor festgestellt, was allerdings auf methodische Limitierung zurückzuführen sein könnte. Insgesamt stützen die ZUSAMMENFASSUNG ix Ergebnisse die erste und zweite Hypothese, was darauf hindeutet, dass das olfaktorische System von Collembolen in der Lage ist, Pilze entsprechend ihrer Toxizität zu differenzieren. Collembolen meiden zudem bereits befressene Pilze, was auf induzierte Abwehrsubstanzen in den Pilzen hindeutet. H3. Das dritte Experiment untersuchte den Einfluss pilzlicher Sekundärmetabolite auf die Transkriptregulation eines Spektrums von Gensequenzen (ESTs) von Folsomia candida, einem Modellorganismus in der Ökotoxikologie. Der Wildtyp von A. nidulans (WT) mit vollständig exprimiertem Sekundärmetabolismus, einschließlich Sterigmatocystin (ST), die knock out Mutante A. nidulans ΔLaeA mit reduziertem Sekundärmetabolitanteil und der Referenzorganismus Cladosporium cladosporioides wurden in einem Fütterungsexperiment als Einzel- oder als Mischkost angeboten. Es wurde angenommen, dass (i) A. nidulans WT mit hohem Toxinanteil die Transkription von stressassoziierten Genen in F. candida stärker beeinflusst als A. nidulans ΔLaeA mit stark reduzierter Toxinbildung, dass (ii) C. cladosporioides die Transkription von Genen in F. candida weniger beeinflusst als die A. nidulans Stämme ΔLaeA and WT und, dass (iii) Mischdiäten verglichen mit Einzeldiäten andere Expressionsmuster verursachen. Alle drei Hypothesen wurden generell unterstützt trotz der meist unbekannten Funktion der regulierten ESTs. Die Ergebnisse geben Hinweise auf die molekulare Wirkungsweise von pilzlichen Sekundärmetaboliten in Collembolen. Die Ergebnisse deuten damit auf evolutive Anpassungsmechanismen von Collembolen auf pilzliche Toxine hin. Insgesamt bestätigen die Experimente die Hypothese, dass pilzliche Sekundärmetabolite als strukturierende Kraft in Collembolen-Pilz Wechselbeziehungen fungieren. Collembolen können den pilzlichen Sekundärstoffwechsel beeinflussen, wohingegen Pilze über konstitutive und induzierte Abwehrsubstanzen den Metabolismus und Lebenszyklus von Collembolen verändern. Die Verwendung von unterschiedlichen Methoden (stabile Isotopenanalyse, Verhaltenstests zur olfaktorischen Wahrnehmung und molekulare Analyse der Genexpression) erlaubte neue Einblicke in die Wechselbeziehung zwischen Pilzen und Pilzfressern. Die Ergebnisse unterstützen die Hypothese, dass pilzliche Sekundärmetabolite zur Abwehr von Fraßfeinden evolviert sind. Dies deutet auf kooevolutionäre Prozesse zwischen Pilzen und Collembolen als Pilzfresser hin. | German |