Khafaji, Hayder Q. A. ; Abdul Wahhab, Hasanain Adnan ; Al-Maliki, Wisam Abed Kattea ; Alobaid, Falah ; Epple, Bernd (2022)
Energy and Exergy Analysis for Single Slope Passive Solar Still with Different Water Depth Located in Baghdad Center.
In: Applied Sciences, 2022, 12 (17)
doi: 10.26083/tuprints-00022321
Article, Secondary publication, Publisher's Version
Text
applsci-12-08561-v2.pdf Copyright Information: CC BY 4.0 International - Creative Commons, Attribution. Download (2MB) |
Item Type: | Article |
---|---|
Type of entry: | Secondary publication |
Title: | Energy and Exergy Analysis for Single Slope Passive Solar Still with Different Water Depth Located in Baghdad Center |
Language: | English |
Date: | 14 September 2022 |
Place of Publication: | Darmstadt |
Year of primary publication: | 2022 |
Publisher: | MDPI |
Journal or Publication Title: | Applied Sciences |
Volume of the journal: | 12 |
Issue Number: | 17 |
Collation: | 14 Seiten |
DOI: | 10.26083/tuprints-00022321 |
Corresponding Links: | |
Origin: | Secondary publication DeepGreen |
Abstract: | In the present experimental work, the energy and exergy for single slope passive solar still with different basin water depths are experimentally investigated under the Baghdad climate condition. The analysis is performed using the governing equations formulated according to the first and second laws of thermodynamics. Compared to solar still with 1 cm water depth, the obtained results indicated that raising the water depth to 2 and 3 cm caused an appreciable drop in water basin temperature, and high levels of water basin reduction were about 4% and 9%, respectively, from 8:00 a.m. to 14:00 p.m., which significantly affects heat and mass transfer and ultimately hinders further water productivity. The maximum evaporation and convection heat transfer coefficients are found (32 W/m²·k) and (2.62 W/m²·k), respectively, while the maximum productivity of solar still is found to be 1468.84 mL/m² with 1 cm water depth. Conversely, stills with 2 and 3 cm water depth, exhibit an increment of the daily exergy efficiency after 14:00 p.m., this increment was the most for the still with 3 cm water depth. Therefore, we have concluded that the still with 1 cm of water depth attained the highest water productivity, while the still with 3 cm of water depth attained the best exergy efficiency with no additional costs. |
Uncontrolled Keywords: | energy analysis, exergy efficiency, solar still, water depth, water productivity |
Status: | Publisher's Version |
URN: | urn:nbn:de:tuda-tuprints-223211 |
Classification DDC: | 600 Technology, medicine, applied sciences > 620 Engineering and machine engineering |
Divisions: | 16 Department of Mechanical Engineering > Institut für Energiesysteme und Energietechnik (EST) |
Date Deposited: | 14 Sep 2022 12:09 |
Last Modified: | 14 Nov 2023 19:05 |
SWORD Depositor: | Deep Green |
URI: | https://tuprints.ulb.tu-darmstadt.de/id/eprint/22321 |
PPN: | 499599861 |
Export: |
View Item |