Matchanov, Alimjon D. ; Esanov, Rakhmat S. ; Renkawitz, Tobias ; Soliev, Azamjon B. ; Kunisch, Elke ; Gonzalo de Juan, Isabel ; Westhauser, Fabian ; Tulyaganov, Dilshat U. (2022)
Synthesis, Structure–Property Evaluation and Biological Assessment of Supramolecular Assemblies of Bioactive Glass with Glycyrrhizic Acid and Its Monoammonium Salt.
In: Materials, 2022, 15 (12)
doi: 10.26083/tuprints-00021636
Article, Secondary publication, Publisher's Version
Text
materials-15-04197.pdf Copyright Information: CC BY 4.0 International - Creative Commons, Attribution. Download (2MB) |
Item Type: | Article |
---|---|
Type of entry: | Secondary publication |
Title: | Synthesis, Structure–Property Evaluation and Biological Assessment of Supramolecular Assemblies of Bioactive Glass with Glycyrrhizic Acid and Its Monoammonium Salt |
Language: | English |
Date: | 11 July 2022 |
Place of Publication: | Darmstadt |
Year of primary publication: | 2022 |
Publisher: | MDPI |
Journal or Publication Title: | Materials |
Volume of the journal: | 15 |
Issue Number: | 12 |
Collation: | 13 Seiten |
DOI: | 10.26083/tuprints-00021636 |
Corresponding Links: | |
Origin: | Secondary publication DeepGreen |
Abstract: | Medical nutrients obtained from plants have been used in traditional medicine since ancient times, owning to the protective and therapeutic properties of plant extracts and products. Glycyrrhizic acid is one of those that, apart from its therapeutic effect, may contribute to stronger bones, inhibiting bone resorption and improving the bone structure and biomechanical strength. In the present study, we investigated the effect of a bioactive glass (BG) addition to the structure–property relationships of supramolecular assemblies formed by glycyrrhizic acid (GA) and its monoammonium salt (MSGA). FTIR spectra of supramolecular assemblies evidenced an interaction between BG components and hydroxyl groups of MSGA and GA. Moreover, it was revealed that BG components may interact and bond to the carboxyl groups of MSGA. In order to assess their biological effects, BG, MSGA, and their supramolecular assemblies were introduced to a culture of human bone-marrow-derived mesenchymal stromal cells (BMSCs). Both the BG and MSGA had positive influence on BMSC growth, viability, and osteogenic differentiation—these positive effects were most pronounced when BG1d-BG and MSGA were introduced together into cell culture in the form of MSGA:BG assemblies. In conclusion, MSGA:BG assemblies revealed a promising potential as a candidate material intended for application in bone defect reconstruction and bone tissue engineering approaches. |
Uncontrolled Keywords: | bioactive glasses, glycyrrhizic acid, supramolecular assemblies, bone tissue engineering |
Status: | Publisher's Version |
URN: | urn:nbn:de:tuda-tuprints-216368 |
Classification DDC: | 500 Science and mathematics > 540 Chemistry 500 Science and mathematics > 570 Life sciences, biology |
Divisions: | 11 Department of Materials and Earth Sciences > Material Science > Dispersive Solids |
Date Deposited: | 11 Jul 2022 13:27 |
Last Modified: | 14 Nov 2023 19:04 |
SWORD Depositor: | Deep Green |
URI: | https://tuprints.ulb.tu-darmstadt.de/id/eprint/21636 |
PPN: | 498914682 |
Export: |
View Item |