Patel, Satyanarayan ; Kodumudi Venkataraman, Lalitha ; Saurabh, Nishchay (2022)
Enhanced Pyroelectric Performance of Lead-Free Zn-Doped Na1/2Bi1/2TiO3-BaTiO3 Ceramics.
In: Materials, 2022, 15 (1)
doi: 10.26083/tuprints-00020282
Article, Secondary publication, Publisher's Version
|
Text
materials-15-00087-v2.pdf Copyright Information: CC BY 4.0 International - Creative Commons, Attribution. Download (5MB) | Preview |
Item Type: | Article |
---|---|
Type of entry: | Secondary publication |
Title: | Enhanced Pyroelectric Performance of Lead-Free Zn-Doped Na1/2Bi1/2TiO3-BaTiO3 Ceramics |
Language: | English |
Date: | 13 April 2022 |
Place of Publication: | Darmstadt |
Year of primary publication: | 2022 |
Publisher: | MDPI |
Journal or Publication Title: | Materials |
Volume of the journal: | 15 |
Issue Number: | 1 |
Collation: | 15 Seiten |
DOI: | 10.26083/tuprints-00020282 |
Corresponding Links: | |
Origin: | Secondary publication DeepGreen |
Abstract: | Lead-free Na₁/₂Bi₁/₂TiO₃-BaTiO₃ (NBT-BT) has gained revived interest due to its exceptionally good high power properties in comparison to commercial lead-based piezoelectrics. Recently, Zn-modified NBT-BT-based materials as solid solution and composites have been reported to exhibit enhanced depolarization temperatures and a high mechanical quality factor. In this work, the pyroelectric properties of Zn-doped NBT-6mole%BT and NBT-9mole%BT ceramics are investigated. The doped compositions of NBT-6BT and NBT-9BT feature a relatively stable pyroelectric property in a wide temperature range of ~37 K (300–330 K) and 80 K (300–380 K), respectively. A threefold increase in detector figure of merit is noted for 0.01 mole Zn-doped NBT-6mole% BT at room temperature in comparison to undoped NBT-6mole%BT and this increase is higher than those of major lead-free materials. A broad range of the temperature-independent behavior for the figures of merit was noted (303–380 K) for Zn-doped NBT-6mole% BT, which is 30 K higher than the undoped material. The large pyroelectric figures of merit and good temperature stability renders Zn-doped NBT-BT an ideal candidate for pyroelectric detector and energy harvesting applications. |
Uncontrolled Keywords: | pyroelectric, lead-free ceramics, dielectric, NBT-BT |
Status: | Publisher's Version |
URN: | urn:nbn:de:tuda-tuprints-202821 |
Classification DDC: | 500 Science and mathematics > 540 Chemistry 600 Technology, medicine, applied sciences > 620 Engineering and machine engineering 600 Technology, medicine, applied sciences > 660 Chemical engineering |
Divisions: | 11 Department of Materials and Earth Sciences > Material Science |
Date Deposited: | 13 Apr 2022 11:37 |
Last Modified: | 14 Nov 2023 19:04 |
SWORD Depositor: | Deep Green |
URI: | https://tuprints.ulb.tu-darmstadt.de/id/eprint/20282 |
PPN: | 500725705 |
Export: |
View Item |