Martinelli, Enzo ; Caggiano, Antonio (2022)
Low-Cycle Fatigue of FRP Strips Glued to a Quasi-Brittle Material.
In: Materials, 2022, 14 (24)
doi: 10.26083/tuprints-00020281
Article, Secondary publication, Publisher's Version
|
Text
materials-14-07753-v3.pdf Copyright Information: CC BY 4.0 International - Creative Commons, Attribution. Download (2MB) | Preview |
Item Type: | Article |
---|---|
Type of entry: | Secondary publication |
Title: | Low-Cycle Fatigue of FRP Strips Glued to a Quasi-Brittle Material |
Language: | English |
Date: | 22 April 2022 |
Place of Publication: | Darmstadt |
Year of primary publication: | 2022 |
Publisher: | MDPI |
Journal or Publication Title: | Materials |
Volume of the journal: | 14 |
Issue Number: | 24 |
Collation: | 14 Seiten |
DOI: | 10.26083/tuprints-00020281 |
Corresponding Links: | |
Origin: | Secondary publication DeepGreen |
Abstract: | This paper aims at further advancing the knowledge about the cyclic behavior of FRP strips glued to quasi-brittle materials, such as concrete. The results presented herein derive from a numerical model based on concepts of based on fracture mechanics and already presented and validated by the authors in previous works. Particularly, it assumes that fracture processes leading to debonding develop in pure mode II, as is widely accepted in the literature. Starting from this assumption (and having clear both its advantages acnd shortcomings), the results of a parametric analysis are presented with the aim of investigating the role of both the mechanical properties of the interface bond–slip law and a relevant geometric quantity such as the bond length. The obtained results show the influence of the interface bond–slip law and FRP bond length on the resulting cyclic response of the FRP-to-concrete joint, the latter characterized in terms of S-N curves generally adopted in the theory of fatigue. Far from deriving a fully defined correlation among those parameters, the results indicate general trends that can be helpful to drive further investigation, both experimental and numerical in nature. |
Uncontrolled Keywords: | FRP, concrete, debonding, cyclic actions |
Status: | Publisher's Version |
URN: | urn:nbn:de:tuda-tuprints-202814 |
Classification DDC: | 600 Technology, medicine, applied sciences > 620 Engineering and machine engineering |
Divisions: | 13 Department of Civil and Environmental Engineering Sciences > Institute of Construction and Building Materials |
Date Deposited: | 22 Apr 2022 12:09 |
Last Modified: | 14 Nov 2023 19:04 |
SWORD Depositor: | Deep Green |
URI: | https://tuprints.ulb.tu-darmstadt.de/id/eprint/20281 |
PPN: | 500484767 |
Export: |
View Item |