TU Darmstadt / ULB / TUprints

Assessment of the Adhesion Performance of Diamond-Like Carbon Coatings at Elevated Temperature

Braak, Richard (2021):
Assessment of the Adhesion Performance of Diamond-Like Carbon Coatings at Elevated Temperature. (Publisher's Version)
Darmstadt, Technische Universität,
DOI: 10.26083/tuprints-00014577,
[Ph.D. Thesis]

[img]
Preview
Text
dissertation_R_Braak_Veroeff.pdf
Available under CC-BY-SA 4.0 International - Creative Commons, Attribution Share-alike.

Download (41MB) | Preview
Item Type: Ph.D. Thesis
Status: Publisher's Version
Title: Assessment of the Adhesion Performance of Diamond-Like Carbon Coatings at Elevated Temperature
Language: English
Abstract:

Coatings of diamond-like carbon (DLC) are amorphous thin films with diamond-like properties and therefore excellently suited for the reduction of friction and wear in tribological systems. A reduced wear rate corresponds to a longer mean lifetime of the system. However, an adhesive failure of the DLC coating can lead to immediate failure of the application. Particularly, intrinsic compressive stresses within the DLC coatings are a driving force for delamination of these thin films. In order to assess the risk for an adhesive failure, it is common sense that the adhesion of the coating is the essential property of the coating system. However, it will be shown, that for DLC coatings, the delamination initiation and its propagation rely on different characteristic stress conditions. This is especially relevant for coating systems with extended adhesion layer systems. For a reliable assessment of the risk for adhesive failure, this interplay between initiation and propagation of delamination must be considered. Therefore the term adhesion performance is introduced as a systemic measure dependent on the application conditions and comprising delamination initiation and progression. For establishing the model for the adhesion performance, the Evans-&-Hutchinson-model based on buckling of an Euler column is extended by considering the initiation of buckling, as well as the re-initiation of buckling after break-away of a coating segment, where a characteristic residual crack remains and crack growth can be driven by corrosive means. Finally, thermal aging is investigated, motivated by elevated application temperatures, which can activate diffusion processes, altering the adhesion performance. A routine for assessing the adhesion performance is worked out based on the three aspects delamination initiation, buckling and re-initiation of delamination, complemented by the influence of thermal aging on the adhesion performance. This approach is performed on nine different adhesion layer designs as support for hydrogenated and H-free DLCs. The adhesion layer designs comprise metallic Cr- and Ti-adhesion layers with different kinds of carbide interlayers, such as CrxCy, TiC and SiC, partly with alterations in the deposition process. The coating systems are extensively analyzed via transmission electron microscopy, in order to correlate structure and phase compositions with the adhesion performance. A design concept for adequate adhesion performance with respect to automotive applications with steel substrates and elevated temperatures was furthermore derived based on the findings.

Alternative Abstract:
Alternative AbstractLanguage
Beschichtungen aus diamantähnlichem Kohlenstoff (DLC) sind amorphe Dünnschichten mit diamantähnlichen Eigenschaften und daher bestens für die Reduzierung von Reibung und Verschleiß in tribologischen Systemen geeignet. Eine verringerte Verschleißrate erlaubt eine verlängerte mittlere Laufzeit eines Systems. Allerdings kann ein adhäsives Versagen der DLC Schicht zu einem sofortigen Versagen der Applikation führen. Insbesondere Druckeigenspannungen innerhalb der DLC-Schicht sind Triebkräfte für Delamination der Dünnschichten. Um das Risiko für adhäsives Versagen einschätzen zu können, ist es allgemein anerkannt, dass die Haftung der Beschichtung die essentielle Größe des Schichtsystems ist. Allerdings wird in dieser Arbeit gezeigt, dass die Initiierung und der Fortschritt von Schichtdelaminationen bei DLC-Schichten auf unterschiedlichen Spannungssituationen beruhen. Dies ist besonders relevant für Schichtsysteme mit ausgedehnten Haftschichtsystemen. Für eine verlässliche Risikobewertung für adhäsives Versagen muss das Zusammenspiel zwischen Initiierung und Voranschreiten der Delamination berücksichtigt werden. Zu diesem Zweck wird der Begriff Haftungsperformance eingeführt, als systemische Größe, die von den Applikationsbedingungen abhängt und Initiation, sowie Fortschritt der Delamination berücksichtigt. Um ein Model für die Hatungsperformance zu erstellen, wurde das Model von Evans und Hutchinson, das auf dem Buckling eines Euler-Stabs beruht, erweitert durch eine Betrachtung der Initiation des Bucklings, sowie das Reinitiieren, nachdem ein Schichtsegment nach dem Buckling ausgebrochen ist, wobei ein charakteristischer Riss zurückbleibt und ein Rissfortschritt unter gewissen Bedingungen durch Korrosion vorangetrieben werden kann. Schließlich wird auch thermische Alterung betrachtet, motiviert durch erhöhte Anwendungstemperaturen, die Diffusionsprozesse aktivieren können, die zu einer Verschlechterung der Haftungsperformance führen können. Eine Routine zur Bewertung der Haftungsperformance wurde entwickelt, basierend auf den drei Aspekten Delaminationsinitiierung, Buckling und Reinitiierung der Delamination, vervollständigt durch den Einfluss von thermischer Alterung auf die Haftungsperformance. Dieser Ansatz wurde auf neun verschieden Haftschichtsysteme für H-haltige und H-freie DLC-Schichten angewandt. Die untersuchten Haftschichtsysteme bestehen aus metallischen Cr- und Ti-Haftschichten mit verschiedenen Karbidzwischenschichten, wie CrxCy, TiC und SiC, teilweise mit Variationen in der Prozessführung. Die Schichtsysteme wurden umfangreich mittels Transmissionselektronenmikroskopie untersucht, um strukturelle Merkmale, sowie Phasenzusammensetzungen mit der Haftungsperformance korrelieren zu können. Ein Konzept für adäquate Haftungsperformance für Anwendungen im Automobilbereich mit Stahlsubstraten und erhöhten Einsatztemperaturen wurde außerdem abgeleitet, basierend auf den Ergebnissen dieser Arbeit.German
Place of Publication: Darmstadt
Collation: 189 Seiten
Classification DDC: 500 Naturwissenschaften und Mathematik > 500 Naturwissenschaften
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften
Divisions: 11 Department of Materials and Earth Sciences > Material Science
Date Deposited: 03 Feb 2021 06:53
Last Modified: 03 Feb 2021 06:54
DOI: 10.26083/tuprints-00014577
URN: urn:nbn:de:tuda-tuprints-145772
Additional Information:

In Kooperation mit der Robert Bosch GmbH

Referees: Durst, Prof. Dr. Karsten and Ensinger, Prof. Dr. Wolfgang
Refereed: 10 November 2020
URI: https://tuprints.ulb.tu-darmstadt.de/id/eprint/14577
Export:
Actions (login required)
View Item View Item